CO-OP Studio

Stage 1 Site Contamination Assessment

Proposed Aquatic Facility

Gordon Street, Port Macquarie

Report No. RGS21005.6-AC 23 May 2023

Manning-Great Lakes

Port Macquarie

Coffs Harbour

Email tim.morris@regionalgeotech.com.au

Web: www.regionalgeotech.com.au

RGS21005.6-AC

23 May 2023

CO-OP Studio 35 Richards Avenue SURREY HILLS NSW 2010

Attention: Steven Donaghey

Dear Steven,

RE: Proposed Aquatic Facility – Gordon Street, Port Macquarie

Stage 1 Site Contamination Assessment

As requested, Regional Geotechnical Solutions Pty Ltd (RGS) has undertaken a Stage 1 Site Contamination Assessment for the proposed development at Gordon Street, Port Macquarie.

The assessment included identification of areas of environmental concern based on site observations and past landuse, and a limited amount of sampling in the identified areas. The results did not reveal contamination exceeding guidelines for recreational land use for the proposed aquatic centre development. Some uncontrolled filling from unknown sources was identified that included mixed waste materials.

The uncontrolled fill areas will require a Stage 2 Contamination Assessment once further details of the proposed development are known including potential excavations or placement of fill over the existing profile. A Remedial Action Plan may then be required for the treatment or removal of any identified contamination.

However, the findings of this assessment indicate that it is likely that the site can be remediated to a standard appropriate for the proposed aquatic centre development from a site contamination perspective provided the recommendations and advice of this report are adopted. It is noted that details of the proposed development are not yet available and proposed filling/excavations etc will have implications for the extent or need for remediation works.

The work presented herein was reviewed by Dr David Tully CEnvP SC. A copy of Dr Tully's letter pertaining to the review is appended to the report.

If you have any questions regarding this project, please contact the undersigned.

For and on behalf of Regional Geotechnical Solutions Pty Ltd

Prepared by

Reviewed by

Tim Morris

Principal Engineering Geologist

Andrew Hills

Senior Environmental Engineer

Table of Contents

1	IN.	INTRODUCTION			
2	GI	GUIDELINES AND ASSESSMENT CRITERIA			
3	M	IETHODOLOGY			
4	SIT	SITE SETTING AND HISTORY			
	4.1	Site Description	3		
	4.2	Historical Aerial Photography	5		
	4.3	NSW EPA Records	7		
	4.4	Land Title Search	7		
	4.5	Geology	7		
	4.6	Groundwater	7		
	4.7	Land Zoning	8		
	4.8	Historical Information	9		
	4.9	Site History Summary	9		
5	SIT	E CONTAMINATION ASSESSMENT	10		
	5.1	Conceptual Site Model	10		
	5.2	Field Work	11		
	5.3	Ground Conditions Encountered	12		
	5.4	Laboratory Testing	14		
	5.5	Quality Control	14		
	5.6	Analysis Results	14		
6	AS	SSESSMENT AND CONCLUSIONS REGARIDNG SITE CONTAMINATION	15		
	6.1	Summary	16		
	6.2	Recommended Stage 2 Contamination Assessment	16		
	6.3	Conclusion	17		
7	LIN	MITATIONS	17		

Figures

Figure 1 Site Location Plan

Figure 2 Investigation Location Plan

Figure 3 Historical Aerial Photograph – 1959
Figure 4 Historical Aerial Photograph – 1969
Figure 5 Historical Aerial Photograph – 1991

Appendices

Appendix A Site History Documentation
 Appendix B Results of Field Investigations
 Appendix C Laboratory Test Result Sheets
 Appendix D Letter from David Tully CEnvP SC

1 INTRODUCTION

Regional Geotechnical Solutions Pty Ltd (RGS) have undertaken a Stage 1 Site Contamination Assessment for a proposed Aquatic Facility at Macquarie Park, Gordon Street, Port Macquarie. It comprises 14 lots:

- Lots No's 5 9;
- Part of Lot No's 14 20 (DP758852);
- Part of Lot No 7063 (DP1040735); and
- Lot No 2 (DP808449).

The site is approximately 2.5 ha and comprises grass playing fields and an open grassed area. It also includes part of an existing sealed car park in Munster Street. Details of the proposed development are not yet available but are likely to include buildings and pool(s) in the northern half of the site and car parking in the southern half. The site location is shown on Figure 1.

The area of assessment excludes the netball courts and the associated amenities block to the south. The sewer pump station at Lot 1 DP808449 in the west of the site is also excluded from the area of assessment.

The purpose of the work described herein was to assess the suitability of the site for the proposed development, with respect to the presence of site contamination resulting from past land use and activities, as well as providing discussions and recommendations regarding:

- Identification of Areas of Environmental Concern (AEC) and Chemicals of Concern (COC);
- The undertaking of limited targeted sampling and analysis at the selected AEC to allow some preliminary analysis of the presence of contamination;
- Evaluation of test results against industry accepted criteria for the intended landuse;
- Conclusions regarding the presence of contamination at the site and its potential impacts on the proposed recreational landuse; and
- The requirement for remediation, further investigation, or ongoing management of site contamination.

The work was commissioned by Steven Donaghey on behalf of CO-OP Studio Pty Ltd and was undertaken in accordance with proposal number RGS21005.6-AA dated 2 February 2021. The project was paused after fieldwork was undertaken and has recently recommenced.

2 GUIDELINES AND ASSESSMENT CRITERIA

The assessment was aimed at fulfilling the requirements of a Stage 1 Contaminated Site Assessment in accordance with NSW EPA Guidelines for Consultants Reporting on Contaminated Land (2020)

To evaluate results and for guidance on assessment requirements, the assessment adopted the guidelines provided in the National Environment Protection (Assessment of Site Contamination) Measure (NEPM 2013). The NEPM document provides a range of guidelines for assessment of contaminants for various land use scenarios. The proposed land use is considered equivalent to Public Open Space and as such comparison with the NEPM guideline values for HIL C land use was considered appropriate. However, it is noted that some areas of the site will be used for car parking and the proposed swimming pool complex which may have limited opportunities for soil

access, and a Commercial type land use may then be more appropriate. This should be reviewed once more details of the proposed development are available.

In accordance with the NEPM guideline the following criteria were adopted for this assessment:

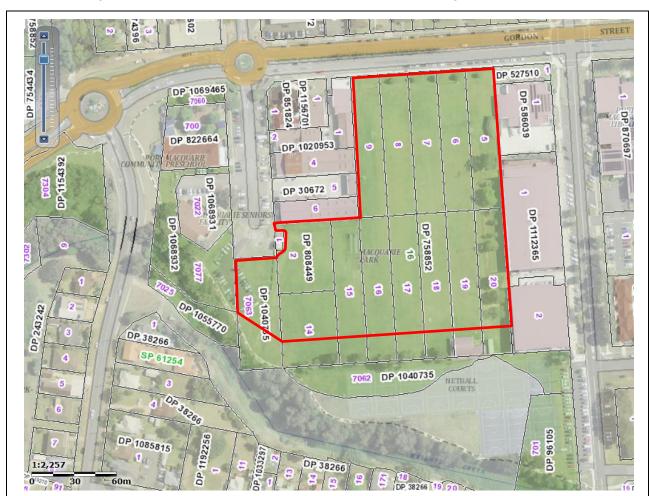
- Health Investigation Levels (HILs) for Recreational C (Public Open Space) land use were
 used to assess the potential human health impact of heavy metals and polycyclic aromatic
 hydrocarbons (PAH);
- Health Screening Levels (HSLs) for coarse textured (sand) or fine textured (silt and clay) soils
 on a Commercial D site with respect to inhalation of indoor air were adopted as
 appropriate for the soils encountered to assess the potential human health impact of
 petroleum hydrocarbons and benzene, toluene, ethyl-benzene, xylenes (BTEX) compounds;
- Ecological Investigation Levels (EILs) for Recreational C (Public Open Space) land use were
 used for evaluation of the potential ecological / environmental impact of heavy metals and
 naphthalene;
- Ecological Screening Levels (ESLs) for coarse textured (sand) soils or fine textured (silt and clay) soils on a Recreational C (Public Open Space) land use site were adopted as appropriate for the soils encountered, to assess the potential ecological / environmental impact of petroleum hydrocarbons, BTEX compounds and benzo(a)pyrene.

In accordance with NEPM 2013, exceedance of the criteria does not necessarily deem that remediation is required, but is a trigger for further assessment of the extent of contamination and associated risks. The adopted criteria are presented in the results summary table in Appendix C.

3 METHODOLOGY

In accordance with the relevant sections of the National Environment Protection (Assessment of Site Contamination) Measure 1999 (Amended 2013), the assessment involved the following process:

- A brief study of site history, with the aim of identifying past activities on or near the site that might have the potential to cause contamination;
- Review of selected available recent and historical aerial photography for the last 50 years;
- A search of NSW EPA records, or contaminated land notifications on the site;
- Government records of groundwater bores in the area;
- Land title search of the respective lots available from the Land Titles Office;
- Using the above information, characterise the site into Areas of Environmental Concern, in which the potential for contamination has been identified, and nominate Chemicals of Concern that might be associated with those activities;
- Undertake targeted judgemental sampling and analysis at the selected Areas of Concern to allow some preliminary analysis of the presence of contamination;
- Analyse samples for a suite of potential contaminants associated with the past activities;
- Evaluate the results against industry accepted criteria for the proposed land use.


4 SITE SETTING AND HISTORY

4.1 Site Description

The approximately 2.5ha area of assessment is within Macquarie Park which comprises grassed playing fields with surface elevations ranging from approximately RL 3m in the south west to RL 5m in the north east.

The site is situated at the toe of a south facing ridge slope and grades down to the south towards Wrights Creek. It appears to have been a low lying landscape that has been historically modified by site filling works.

A satellite image that shows the location of the site and the site setting is reproduced in Plate 1.

Plate 1: Satellite image dated 2012 obtained from the NSW Government 'Six Maps' website that illustrates the site location and setting at Macquarie Park. The approximate area of assessment is outlined in red. The northern half of the site is proposed for pools and structures and the southern half for car parking.

Grassed playing fields are present in Lot No's 5 to 9 and 16 to 20 and have lighting towers at regular interval around the perimeter. A brick amenities block with tile roof and a metal shipping container are present in the northeast corner of the site in Lot No. 5. Lot No's 2, 14 and 15 comprise an open grassed area. A set of cricket nets are visible in the 2012 satellite imagery in Lot 15 but have since been removed.

A fill embankment for spectator viewing approximately 115m in length, 8m width and 1.5m in height is present along the eastern boundary in Lot No's 5 and 20. Orange/red clay soils were exposed on the sides of the mound and the material may have been imported to site.

The site also includes a portion of an existing car park, located in part of Lot 7063 at the southern end of Munster Street. The car park has a two-coat seal and the pavement condition is variable with some patching and an uneven surface. A north – south concrete footpath is also present within Lot 7063.

Vegetation consists of short, maintained grass and medium sized trees along the north, east and southern boundaries.

Drainage of the site would be via a combination of overland flow towards the south and surface infiltration. Some localised depressions were present in the southwest of the site and contained surface water at the time of the assessment on 18 March 2021. Wrights Creek is located on the southwestern boundary of the site and flows to the west. It is subject to limited tidal exchange at the Lake Road culvert crossing. Vehicle access to the site was restricted to tracked plant when fieldwork was undertaken on 18 March 2021 due to surface water and slippery conditions.

The site is bound by Gordon Street to the north, three storey commercial office buildings to the east, concrete netball courts to the south, Wrights Creek to the south-west and portal frame commercial buildings to the west. A raised brick sewer pump station is located in the west of the site near Munster Street within Lot 1 DP808449.

Selected site photographs are presented below.

Looking north east towards brick amenities block and metal shipping container in north east corner of site.

Looking south across playing fields. Site has been modified by filling works to create a near level surface. Lighting poles line the perimeter of the sporting fields.

Looking south across open grassed area in southwest of site on 18 March 2021.

Raised spectator mound on eastern site boundary. Some red clay soils exposed on side of mound.

Looking north towards sewer pump station located on western site boundary adjacent to Munster Street.

Looking south over pump station and car park. The car park is partially located within the site.

4.2 Historical Aerial Photography

Some historical aerial photographs of the site were supplied by Council and others were accessed from publicly available databases. The photographs and available satellite imagery was reviewed to assist in identifying past land uses that may contribute to site contamination. The results of the review are summarised in

Table 1.

Table 1 - Aerial Photograph and Imagery Summary

Year	Site	Surrounding Land
	Site appears to be mostly cleared with some trees in the centre of the site. Possibly used for grazing purposes.	A dwelling is located outside the north east corner of the site. near the intersection of Munster and Grant Street.
1956	Darker shade of vegetation in north and south of site may be indicative of low lying areas.	Adjacent streets appear to be of gravel construction. Munster Street continues south and crosses Wilson Creek onto Lake Road, to the east of the current creek crossing alignment.
1959 (Figure 3)	No significant change. Darker shade of vegetation in north and south of site indicates low lying alluvial depressions.	An additional large building is present to the south east of the site on Grant Street. Filling works appear to have occurred to the north west of the site and a large commercial type building is present.
1969 (Figure 4)	Image is of poor resolution, however, it appears that the site has been or is being modified by filling works with a pale coloured fill material present across most of the site footprint.	An additional building is present on the eastern boundary on Grant Street.
1979	Sewer pump station visible in Lot 2. Service trench excavations are visible from the pump station to the south, through Lot 7063.	The existing portal frame shed at the end of Munster Street is visible, as well as additional commercial type structures to the north. A building is present on the corner of Grant and Gordon Street.
1981	Poor quality images, however, filling works are occurring in the south west corner of the site in the vicinity of the existing Munster Street car park.	Filling works occurring to south of site near Wilson Creek, where netball courts are now present.
1991 (Figure 5)	Cricket nets are present in the west of the site. Amenities block is visible in the north east corner of the site. Spectator mound present on eastern boundary.	Paved netball courts constructed to south of site and an amenities block is visible. Additional building and swimming pool at building complex on eastern boundary.
2009 Google Earth	Sealed car park has been constructed in south west corner of site in Lot 7063. Light towers are visible.	The buildings on the eastern boundary have been redeveloped as a large commercial complex comprising three separate large office blocks. Additional netball courts have been constructed to the south, towards Grant Street. An additional amenities block/ clubhouse is present to the north of the netball courts.
2022 Google Earth	The cricket nets have been removed, although ground disturbance in their former vicinity is still visible.	No significant change.

4.3 NSW EPA Records

A check with the NSW EPA website (<u>www.epa.nsw.gov.au</u>) revealed that no notices have been issued on the site under the Contaminated Land Management Act (1997).

4.4 Land Title Search

A list of past registered proprietors and lessors of one lot of the 14 present was obtained from the Land Titles Office. A summary of the title details is included in Appendix A.

The title history search revealed the following:

• 1951 - 1990: Crown Land

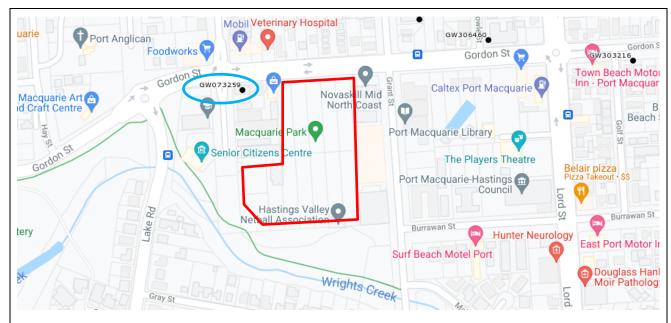
• 1990 – to date: State of NSW

Prior to 1950, allotments 5 to 9 and 13 to 20 of Section 16 were in the possession of T Hughes, D Peden, B Conroy, W Danvers, C Wilkinson and D Gillespie prior to the area being resumed under the Publics Works Act for public purpose – namely a public school, on 20 December 1950.

4.5 Geology

The site is located in an area of gently undulating topography that is underlain by deeply weathered geological units of the Port Macquarie Block which includes slate, chert, basalt, serpentinite and dolerite.

Reference to the Port Macquarie Quaternary Geology Sheet indicates there are Quaternary alluvial valley fill deposits present in the southwest of the site that may comprise alluvial clays, silts, sand or gravel.


Reference to the Port Macquarie 1:25,000 Acid Sulfate Soils (ASS) Risk Map indicates there is a low probability of ASS between 1m and 3m in an alluvial plain located near the southern boundary of the site.

Reference to historical aerial photographs indicate that in 1959 there was an alluvial drainage line located near the northern site boundary as shown in Figure 3. By 1969 the north of the site had been modified by filling works. In 1981 further site filling works are occurring in the south west corner of the site near the existing Munster Street car park.

4.6 Groundwater

A groundwater bore search on the Water NSW website indicates that there is one licensed groundwater bore within 200 m of the site boundary and licensed for commercial and industrial use. The bore is located approximately 120 m to the northwest of the site as shown in Plate 2.

Plate 2: Nearest licensed groundwater bore (GW73259) highlighted in blue is located approximately 120m to the north-west of the site. The approximate site boundaries are outlined in red.

Groundwater bore GW73259 was installed in 1994. The recorded profile comprised fill to 7.6m overlying yellow shale to 16.6m. Groundwater inflow was encountered from 14.6 to 15m with a standing water level at 3m.

Groundwater inflow was encountered during the geotechnical investigation undertaken by RGS at the site in 2021 at the levels shown in Table 2. It should be noted that fluctuations in groundwater levels can occur as a result of seasonal variations, temperature, rainfall and other similar factors, the influence of which may not have been apparent at the time of the assessment.

Two temporary groundwater monitoring wells were installed at the site for ongoing monitoring as part of the geotechnical assessment. A summary of the groundwater monitoring data collected to date is presented in Table 2.

Borehole	Date	Water Depth (m)	Surface Level (m RL)	Reduced Level of Water Table (m RL)
внзв	18/3/2021 (Installation)	1.0	3.4	RL 2.40 m
внзв	11/6/2021	0.97	3.4	RL 2.43 m
BH101	19/4/2021 (Installation)	0.6	4.3	RL 3.70 m

Table 2 – Summary of Groundwater Monitoring

4.7 Land Zoning

Reference to the Port Macquarie Hastings Council Local Environment Plan (LEP) shows the site is currently zoned RE1, Public Recreation.

4.8 Historical Information

Initial discussions with Council suggested that the site was previously used as a landfill facility.

Council subsequently provided additional documentation, a copy of which is presented in Appendix A. It shows an application by Port Macquarie Municipal Council for approval of a site described as "a sanitary depot for the disposal of garbage" was approved in 1961 in Section 15 of the town of Port Macquarie, between Lord Street and Grant Street. This is the site of the existing Port Macquarie Swimming Pool, at 28 Gordon Street (Lot 13-15 DP 758852) rather than the subject site. A note in the file states the facility ceased operation in 1966.

It is noted that filling works within the subject site appear to have taken place between 1959 and 1969, the same period that the "sanitary depot" was in operation at the Port Macquarie Swimming Pool site. There is a possibility that both sites were used for disposal of waste material during this period.

Discussions with a local earthworks contractor indicate that a motel was previously located on the west side of Grant Street where the commercial office buildings are now present in Lot 1 and 2 DP1112365. No further details of the motel are available but this is consistent with the large buildings visible in the historical aerial photography.

4.9 Site History Summary

Based on available data the chronological development of the site was undertaken as summarised below:

- Allotments 5 to 9 and 13 to 20 of Section 16 were in the possession of various individuals prior to the area being resumed for a proposed school in 1951;
- An alluvial depression is visible in the 1959 and 1965 near the northern and southern site boundaries;
- The majority of the site was filled between 1959 and 1969, including the alluvial depression;
- Additional filling works in the south west corner of the site between 1979 and 1981;
- The source of the fill material is not known;
- Large buildings were present since 1959 on the eastern site boundary along Grant Street
 and the number of buildings increased until about 2009. The buildings may have been part
 of a motel but this is not confirmed. The buildings were then demolished prior to 2009 and
 replaced by three large commercial office buildings of two to three storeys;
- Sewer pump station near the western boundary of the site was installed prior to 1979;
- Cricket nets were installed in 1991 and removed in 2017;
- A brick amenities block has been present in the north east corner of the site since at least 1991;
- The car park in the south west corner of the site was constructed between 1997 and 2009;
 and
- Lighting towers were installed in 2010 around the sports field.

5 SITE CONTAMINATION ASSESSMENT

5.1 Conceptual Site Model

Based on the site observations and knowledge obtained about site activities as outlined above, potential Areas of Concern and Chemicals of Concern were identified for the assessment as outlined in Table 3. Refer to Figure 2 for location of the identified AECs within the site.

Table 3 - Conceptual Site Model

Area of Environmental Concern	Mode of Potential Contamination	Chemicals of Concern	Targeted Sampling Location
AEC1: Soils associated with historical filling works	Imported fill of unknown origin.	Heavy Metals, TRH, BTEX, PAH, OC/OPP, asbestos	BH4, BH5 and BH6
AEC2: Soils associated with imported fill for spectator mound	Imported fill of unknown origin.	Heavy Metals, TRH, BTEX, PAH, OC/OPP, asbestos	None to date
AEC3: Soils in vicinity of amenities block	Asbestos building materials, lead based paint	Heavy Metals, asbestos	None to date

Heavy Metals - Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel and Zinc

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

TRH - Total Recoverable Hydrocarbons

PAH – Polycyclic Aromatic Hydrocarbons

OC/OPP – Organochlorine and Organophosphorus Pesticides

An assessment of groundwater assessment was not undertaken as part of this preliminary contamination assessment. Assessment of soil vapours were not undertaken as it is also beyond the scope of this preliminary contamination assessment. Details of future works including potential excavations, if any, are not known.

The presence of measurable concentrations of chemical substances does not automatically imply that the site will cause harm. In order for this to be the case, an exposure route must be present allowing a source to adversely affect a receptor.

Based on the site observations and knowledge obtained about site activities as outlined above, potential exposure routes linking chemicals of concern with identified receptors to form plausible exposure routes are summarised in

Table 4.

Table 4 - Plausible Exposure Pathways

Area of Environmental Concern	Chemicals of Concern	Exposure Route	Receptors	Comment
AEC1: Soils associated with historical filling	Heavy Metals, TRH, BTEX, PAH, OC/OPP, asbestos	Inhalation, dermal contact, ingestion	Site users, construction workers, services maintenance workers	Imported fill of unknown origin
AEC2: Soils associated with imported fill for spectator mound	Heavy Metals, TRH, BTEX, PAH, OC/OPP, asbestos	Inhalation, dermal contact, ingestion	Site users, construction workers, services maintenance workers	Imported fill of unknown origin
AEC3: Soils in vicinity of amenities block	Asbestos building materials, lead based paint	Inhalation, dermal contact, ingestion	Site users, construction workers, services maintenance workers	Age of building not known.

5.2 Field Work

Field work for the assessment was undertaken on 18 March and 19 April 2021 in conjunction with a geotechnical assessment of the site and was based on the supplied drawing titled "PMAF_Likley Building and Pavements Zones 29.01.2021_nts_CO-OP". Fieldwork included:

- Site walkover to assess visible surface conditions and identify evidence of contamination, or past activities that may cause contamination;
- Nine boreholes undertaken by a 4WD mounted or track mounted drilling rig using augering or push tube methods to depths of between 2.2 and 3.2 m;
- Collection of samples for subsequent environmental laboratory testing; and
- Borehole locations were based on professional judgement with consideration of the site history and visible site features.

Engineering logs of the boreholes are presented in Appendix B. Investigation locations are shown on the attached Figure 2 and were obtained by approximate measurements to prominent site features. Coordinates of investigation locations were recorded using a handheld GPS and the coordinates are shown on the engineering logs.

Soil samples were taken from selected intervals in the borehole locations from the push tubes using disposable gloves and hand tools which were decontaminated between sampling points using Decon90 detergent and deionised water. The samples were collected in acid-rinsed 250mL glass jars and placed in an ice-chilled cooler box.

5.3 Ground Conditions Encountered

The materials encountered during the investigation are summarised in Table 5 and Table 6. Further details are presented on the engineering logs in Appendix A.

Table 5 - Summary of Geotechnical Units

Unit	Material	Material Description
UNIT 1A	TOPSOIL/ FILL	Sandy SILT, low plasticity, dark brown, trace grass roots
UNIT 1B	FILL - CLAY	Mixture of Sandy CLAY, brown / pale brown, very stiff. Metal sheeting fragments encountered fill profile in BH3. Hole collapsed at BH3, suggesting presence of voids.
UNIT 2	TOPSOIL	Sandy Clayey SILT, dark grey, with grass roots
UNIT 3A	ALLUVIUM (Soft)	Sandy CLAY to Clayey SILT, grey dark grey, soft to firm
UNIT 3B	ALLUVIUM (Stiff)	Inferred Pleistocene alluvial deposits of Sandy CLAY, brown / grey, to Gravelly Sandy CLAY, orange/brown with red mottling, stiff to very stiff
UNIT 3C	ALLUVIUM (Sand)	Inferred Pleistocene alluvial deposits of alluvial Gravelly Clayey SAND, brown, dense
UNIT 4	RESIDUAL CLAY	CLAY, medium to high plasticity, pale brown/grey, stiff
UNIT 5	ew serpentine	Extremely Weathered Serpentinite, recovered as Sandy Silty CLAY, mixed grey / green / pale brown, stiff/ very stiff

Table 6 - Summary of Subsurface Materials

lion	Depth to Base of Material Layer (m)								
Investigation	Unit 1A Fill/Topsoil	Unit 1B Mixed Clay FILL	Unit 2 Topsoil	Unit 3A Alluvial (Firm Clay)	Unit 3B Alluvial (Stiff Clay)	Unit 3C Alluvial (Sand)	Unit 4 Residual	Unit 5 EW Serpentinite (As Clay)	Water Inflow (m)
BH1	0.0 – 0.15	0.15 – 0.45	0.45 – 0.6	0.6 – 2.1		2.1-2.5	2.5 – 2.7	2.7 ≥ 3.2	0.8
BH2	0.0 – 0.3	0.3 – 1.0	1.0 – 1.3	1.3 – 1.6	1.6 - ≥ 3.2				1.3
вн3	0.0 – 0.2	0.2 – 2.95*							1.0
внзв	0.0 – 0.2	0.2 – 2.0		2.0 ≥ 3.1					1.0
BH4	0.0 – 0.25	0.25 – 2.2		2.2 – 2.7			2.7 ≥ 2.95		2.0
BH5	0.0 – 0.25	0.25 – 2.8		2.8 ≥ 3.0					2.0
BH6	0.0 - 0.3	0.3 – 2.1		2.1 – 2.5	2.5 ≥ 3.0				2.0
BH101	0.0 – 0.2				0.2 ≥ 3.1				1.9
BH102	0.0 – 0.2	0.2 – 1.3		1.3 ≥ 2.2	1.3 ≥ 4.0				

Note: ≥ Indicates that base of material layer was not encountered

^{*} Indicates that the test was terminated due hole collapse

⁻⁻ Indicates that the material was not encountered at the test location

5.4 Laboratory Testing

Samples were transported under chain-of-custody conditions to a NATA accredited specialist chemical testing laboratory, to be tested for the following suite of common contaminants:

- Polycyclic Aromatic Hydrocarbons (PAH);
- Total Recoverable Hydrocarbons (TRH) and Total Petroleum Hydrocarbons (TPH);
- Benzene, Toluene, Ethyl-benzene, Xylenes (BTEX);
- Organochlorine and organophosphorus pesticides (OC/OPs);
- Heavy metals (arsenic, cadmium, chromium, cobalt, copper, lead, mercury, and zinc);
- Asbestos identification in accordance with AS4964; and
- Soil pH, total organic carbon content (TOC), cation exchange capacity (CEC) and electrical conductivity (EC) for the purposes of determination of ecological investigation levels (see Section 5.6).

The results are presented in Appendix C. A summary table of the results comparing them to the adopted guidelines is also presented in Appendix C.

5.5 Quality Control

Samples were obtained using industry accepted protocols for sample treatment, preservation, and equipment decontamination. A duplicate soil sample of BH5 (2.5 – 2.6m) was submitted to the laboratory for analysis as DP1.

The Relative Percent Differences (RPDs) were calculated for the duplicate sample and presented in the results summary table in Appendix B. RPD exceeded 40% in one sample, however, where results for the primary and duplicate samples were less than 10 times the laboratory limit of reporting (LOR), the RPDs have been disregarded.

In addition to the field QC procedures, the laboratory conducted internal quality control testing including surrogates, blanks, and laboratory duplicate samples. The results are presented with the laboratory test results in Appendix B.

On the basis of the results of the field and laboratory quality control procedures and testing the data is considered to reasonably represent the concentrations of contaminants in the soils at the sample locations at the time of sampling and the results can be adopted for this assessment.

5.6 Analysis Results

An appraisal of the laboratory test results presented in Appendix C is provided below with reference to the adopted soil investigation and screening levels discussed in Section 2.

Ells are site specific and are determined by calculating an Ambient Background Concentration (ABC) and an Added Contaminant Limit (ACL) for the site. ABC values were adopted using results from soil sample BH6 (2.5 – 2.6m) in the northern western corner within undisturbed natural soils. Ells are presented in the Summary Table in Appendix C and summarised in

• Table 7.

Table 7 - Ells Summary (With Reference to NEPM, Schedule B1)

Analyte	ABC – BH6 (2.5 – 2.7m) (mg/kg)	EIL – Aged Recreational Landuse (mg/kg)
Copper	6	35
Arsenic	<5	100
Lead	<5	1100
Nickel	27	30
Chromium (III)	209	780
Zinc	<5	140

- Concentrations of heavy metals exceeded the calculated EILs for Nickel and Copper at multiple locations, typically in the fill profiles;
- Elevated concentrations of Total Chromium were present in several samples. Speciation
 analysis previously undertaken in the Port Macquarie area has shown that the natural soils
 are enriched in Chromium III. Chromium VI concentrations are typically below detection.
 There is no HIL for Chromium III or total Chromium, only for Chromium VI;
- Concentrations of remaining heavy metals were above the laboratory limit of reporting (LOR), but were below adopted health investigation criteria for a recreational site in each of the samples analysed;
- Concentrations of Total Recoverable Hydrocarbon (TRH) were below LOR in in each of the samples analysed;
- Concentrations of PAHs were above LOR in one sample (BH5 0.5 0.6 m), but below the
 adopted health investigation criteria for a recreational site in each of the samples analysed;
- Concentrations of BTEX and PCB contaminants were below LOR in each of the samples analysed;
- Concentrations of pesticide contaminants were below LOR in each of the samples analysed;
- Asbestos was not detected in the two soil samples (BH4, 1 1.1m & BH6, 1 1.1m) submitted
 for screening, nor were asbestos type building materials observed on the surface or within
 the fill profiles.

6 ASSESSMENT AND CONCLUSIONS REGARIDING SITE CONTAMINATION

A Stage 1 Site Contamination Assessment was undertaken to assess past and present potentially contaminating activities and contamination types and evaluate the site's suitability for recreational use from a contamination perspective.

6.1 Summary

Based on the results outlined in this report the following points and recommendations are made:

- The site comprises grassed playing fields that are currently zoned for recreational land use. An aquatic facility is proposed for the site and is likely to comprise pools and associated structures in the north of the site and car park areas in the south of the site;
- The site has undergone historical filling works with fill thicknesses ranging from 0.2 to 2.8m. Most of the filling works occurred prior to 1969. Trace metal fragments and a possible void (s) were encountered within the fill at BH3 suggesting potential for mixed fill and waste to be present at the site;
- Considering the age of the existing amenities block (pre 1991) there is the potential for asbestos type building materials to have been used in its construction. Prior to site demolition works a hazardous material inspection should therefore be undertaken to determine if hazardous materials including asbestos are present;
- It is recommended that a Stage 2 Contamination Assessment that includes further sampling
 and analysis be undertaken during site preparation and earthworks for the proposed
 aquatic facility; and
- Should any existing fill require removal off-site, it will require assessment for a Resource Recovery Exemption under Part 9, Clauses 91 and 92 of the Protection of the Environment Operations (Waste) Regulation 2014 in accordance with the Resource Recovery Order under Part 9, Clause 93 of the Protection of the Environment Operations (Waste) Regulation 2014 the Excavated Natural Material (ENM) Order 2014. It is noted that elevated concentrations of Total Chromium and Nickel in some samples would exceed the ENM Order requirements. Fill that does not meet the ENM order may require a Site Specific Exemption in accordance with NSW EPA requirements if it is to be removed from site for reuse, or, waste classification in accordance with NSW EPA requirements if material is proposed to be taken off site and disposed of at a licensed landfill facility.

6.2 Recommended Stage 2 Contamination Assessment

A Stage 2 Contamination assessment is recommended for the following Areas of Concern identified within the site, once details of the proposed development are known:

- AEC1 Soils within the footprint of future works where excavations are proposed within
 areas impacted by historical filling works. A sampling grid with test pits through the fill profile
 is recommended in accordance with the NSW EPA Sampling Design Guidelines (2022) to
 delineate the potential extent of contaminants which may include asbestos containing
 materials (ACM), heavy metals and PAHs associated with imported fill of unknown origins.
 Groundwater assessment may also be required if excavation(s) are proposed;
- AEC2 Existing spectator mound where excavations are proposed within areas impacted by historical filling works. A sampling grid is recommended in accordance with the NSW EPA Sampling Design Guidelines (2022) to delineate the potential extent of contaminants which may include asbestos containing materials (ACM), heavy metals and PAHs associated with imported fill of unknown origins; and
- AEC3 Soils within the vicinity of the existing amenities block following demolition works as there is the potential for asbestos type building materials or lead based paint to have been used in its construction.

6.3 Conclusion

Based on the results obtained in this investigation the site is considered likely can be made suitable for the proposed recreational land use with regard to the presence of soil contamination provided the recommendations and advice of this report are adopted including the undertaking of a Stage 2 Site Contamination Assessment, and if necessary subsequent remediation works, and site preparation works are conducted in accordance with appropriate site management protocols and legislative requirements.

Should potential evidence of site contamination be identified during development activities, such as soil staining, odours or possible asbestos cement sheeting, then a site contamination specialist should be contacted for advice without delay.

7 LIMITATIONS

This report comprises the results of an investigation carried out for a specific purpose and client as defined in the document. The report should not be used by other parties or for purposes or projects other than those assumed and stated within the report, as it may not contain adequate or appropriate information for applications other than those assumed or advised at the time of its preparation. The contents of the report are for the sole use of the client and no responsibility or liability will be accepted to any third party. The report should not be reproduced either in part or in full, without the express permission of Regional Geotechnical Solutions Pty Ltd.

Contaminated site investigations are based on data collection, judgment, experience, and opinion. By nature, these investigations are less exact than other engineering disciplines. The findings presented in this report and used as the basis for the recommendations presented herein were obtained using normal, industry accepted practises and standards. To our knowledge, they represent a reasonable interpretation of the general condition of the site. Under no circumstances, however, can it be considered that these findings represent the actual state of the site at all points.

Recommendations regarding ground conditions referred to in this report are estimates based on the information available at the time of its writing. Estimates are influenced and limited by the fieldwork method and testing carried out in the site investigation, and other relevant information as has been made available. In cases where information has been provided to Regional Geotechnical Solutions for the purposes of preparing this report it has been assumed that the information is accurate and appropriate for such use. No responsibility is accepted by Regional Geotechnical Solutions for inaccuracies within any data supplied by others.

If site conditions encountered during construction vary significantly from those discussed in this report, Regional Geotechnical Solutions Pty Ltd should be contacted for further advice.

This report alone should not be used by contractors as the basis for preparation of tender documents or project estimates. Contractors using this report as a basis for preparation of tender documents should avail themselves of all relevant background information regarding the site before deciding on selection of construction materials and equipment.

If you have any questions regarding this project, or require any additional consultations, please contact the undersigned.

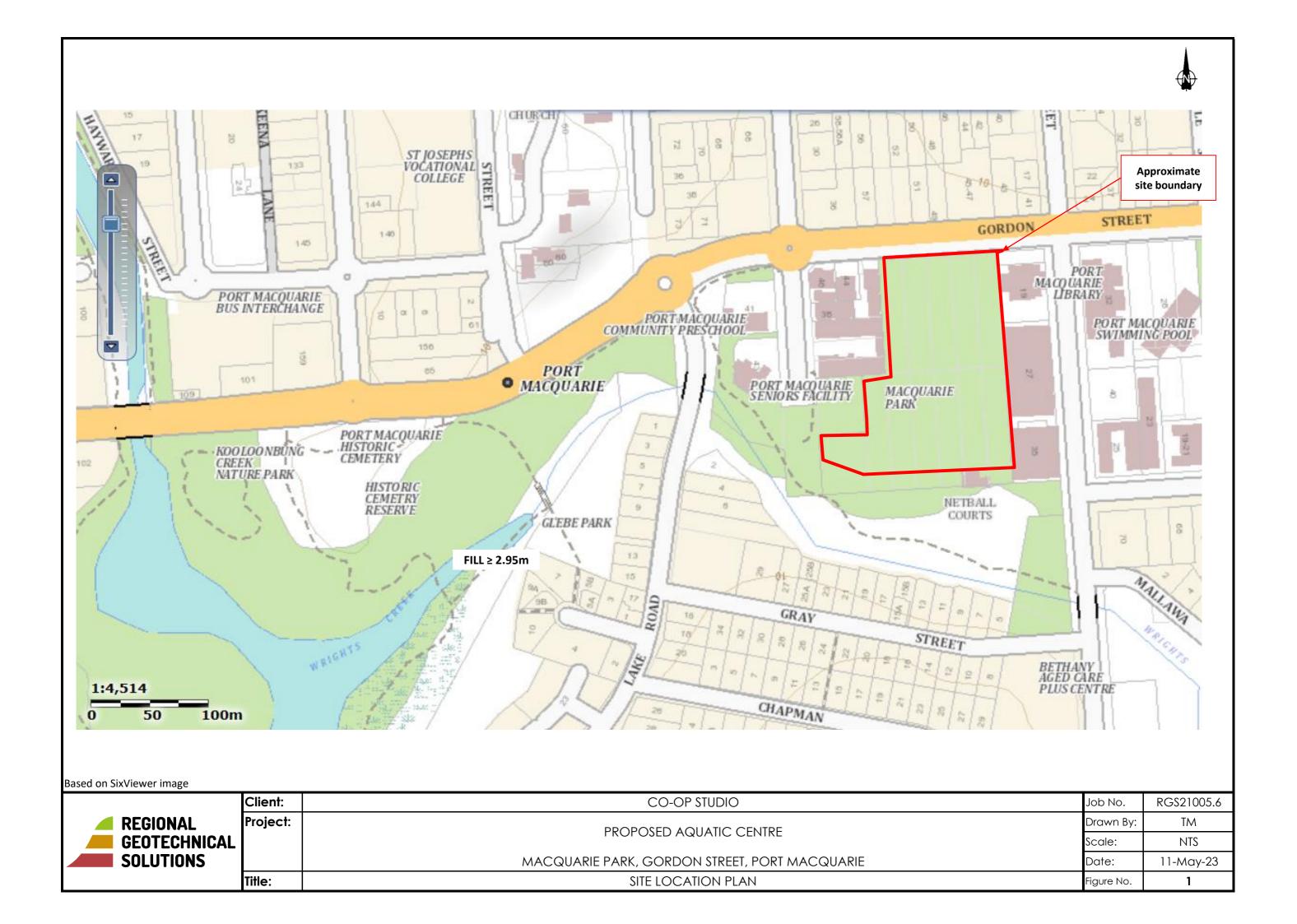
For and on behalf of Regional Geotechnical Solutions Pty Ltd

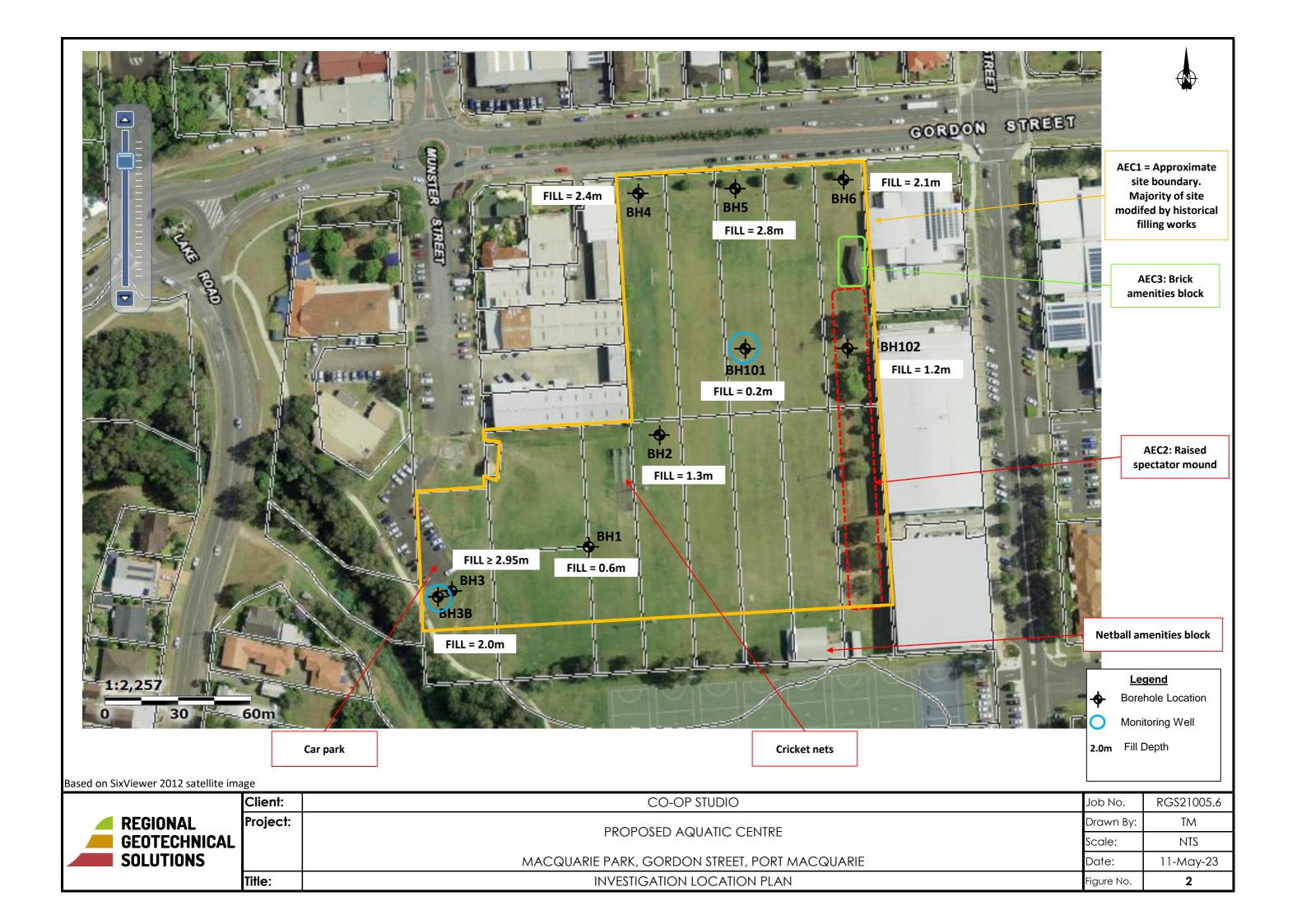
Prepared by

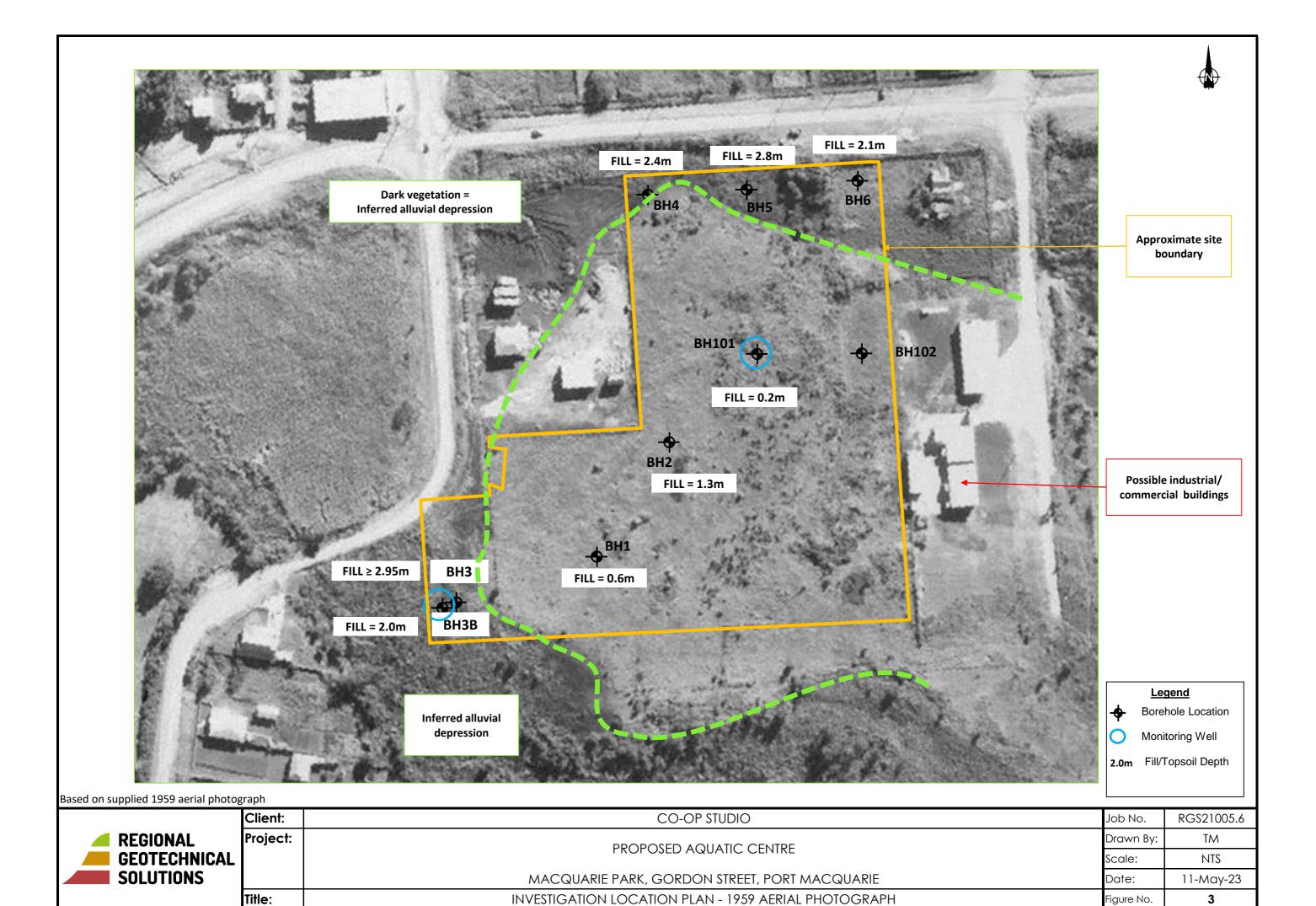
Reviewed by

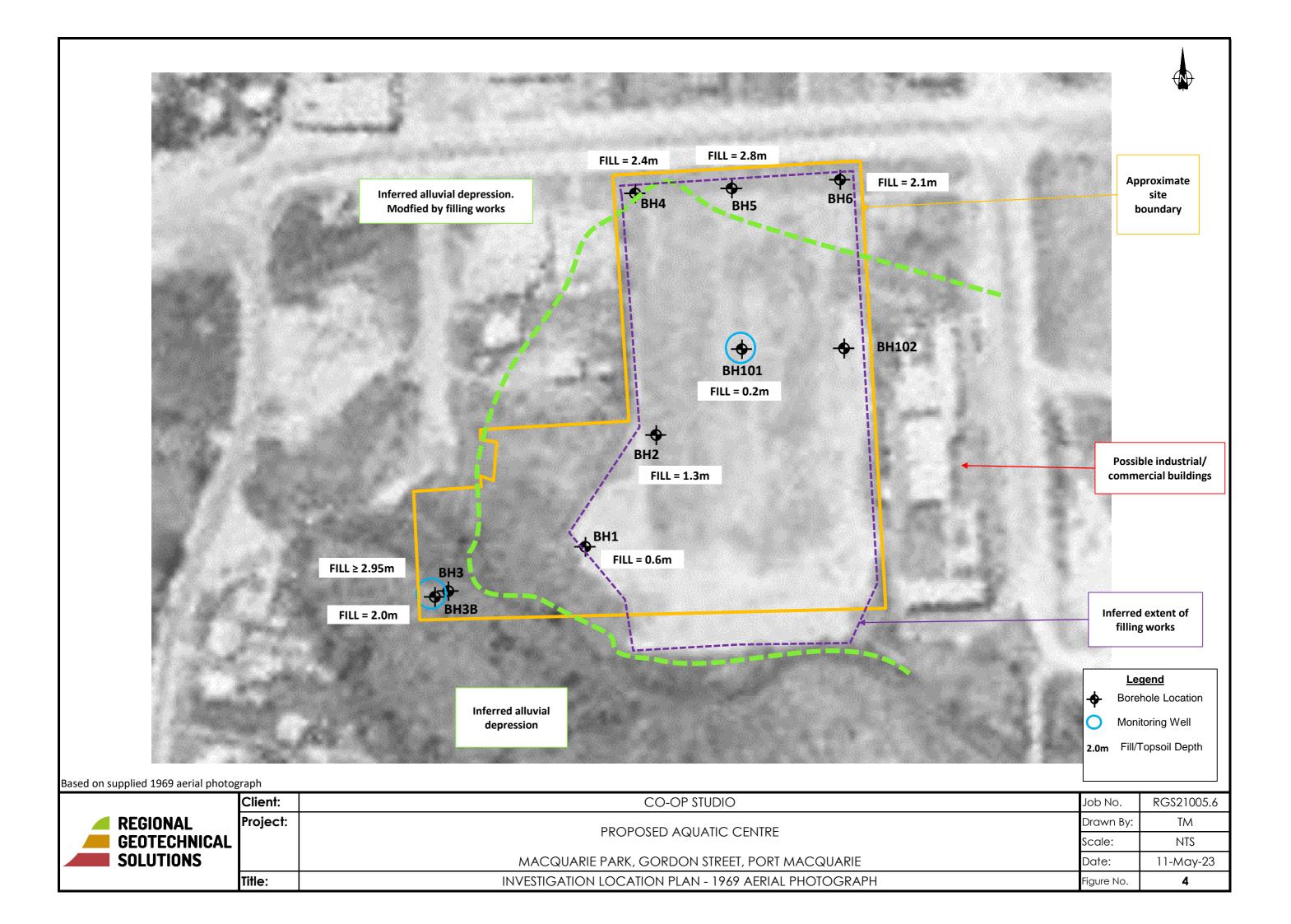
Tim Morris

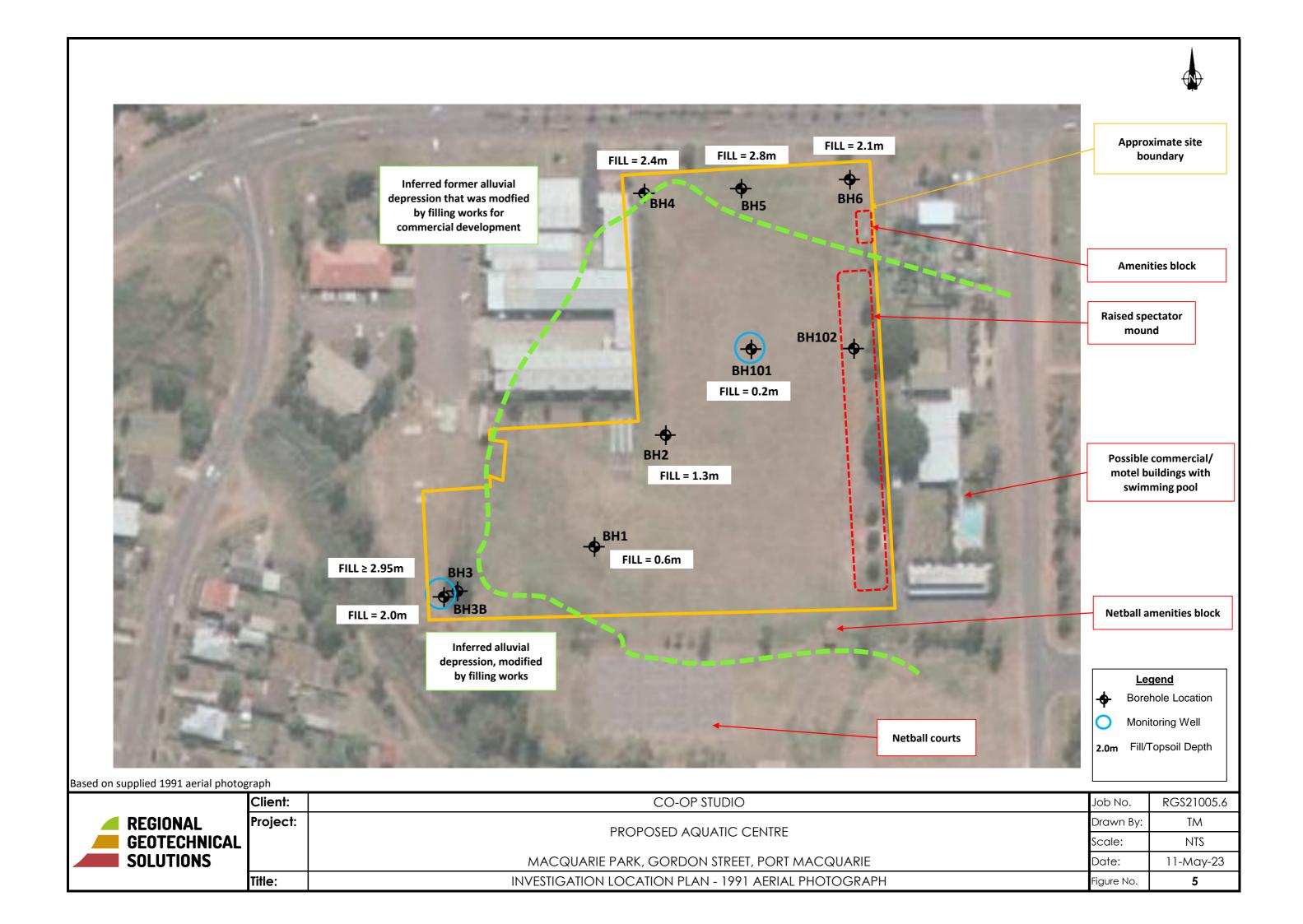
Principal Engineering Geologist


Andrew Hills


Senior Environmental Engineer


Andrew Story




Figures

Appendix A Site History Documentation

ADVANCE LEGAL SEARCHERS PTY LTD

(ACN 147 943 842) ABN 82 147 943 842

 18/36 Osborne Road,
 Telephone: +612 9977 6713

 Manly NSW 2095
 Mobile: 0412 169 809

Email: search@alsearchers.com.au

10th February, 2021

REGIONAL GEOTECHNICAL SOLUTIONS PTY LTD 1/12 Jinalee Road,
PORT MACQUARIE, NSW, 2444

Attention: Tim Morris

RE: Gordon Street,

Port Macquarie RGS21005.6

Current Search

Folio Identifier 5/16/758852 (title attached) Crown Plan 16-706 (plan attached) Dated 08th February, 2021 Registered Proprietor: **STATE OF NEW SOUTH WALES**

Title Tree Lot 5 Section 16 DP 758852

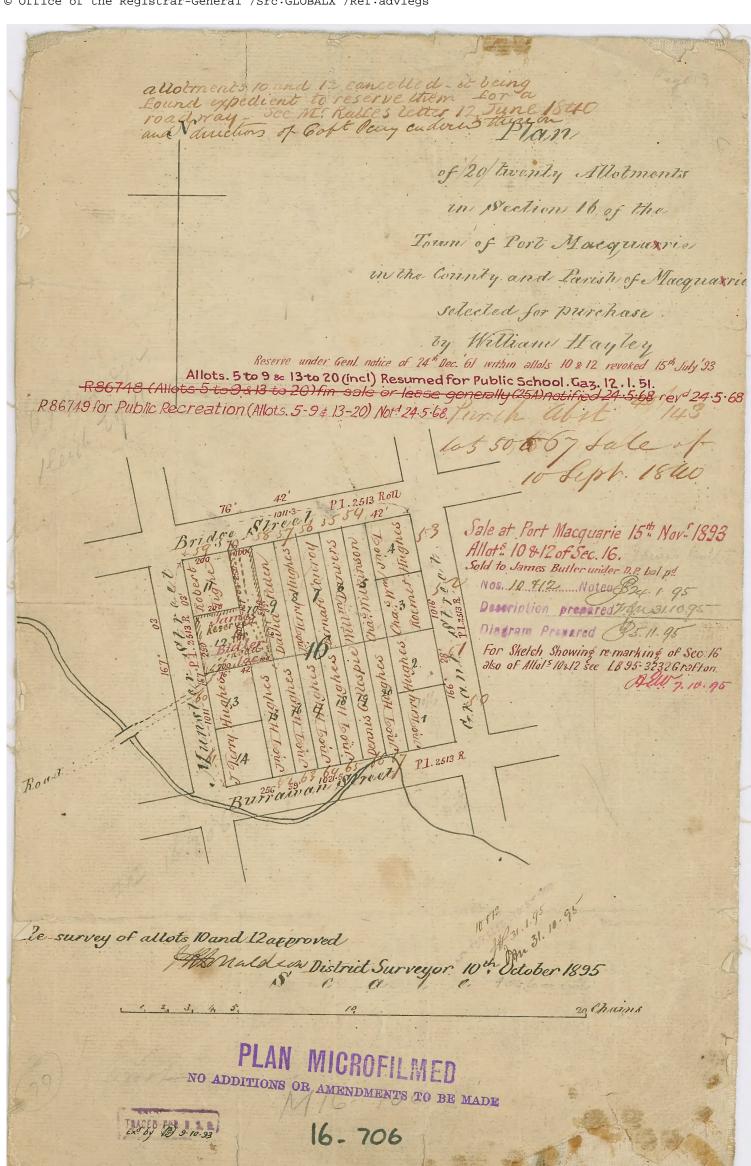
Folio Identifier 5/16/758852

CA 125837

Crown Land

Government Gazette 24th May 1968

Government Gazette 12th January 1951



Summary of proprietor(s) **Lot 5 Section 16 DP 758852**

Year Proprietor(s)

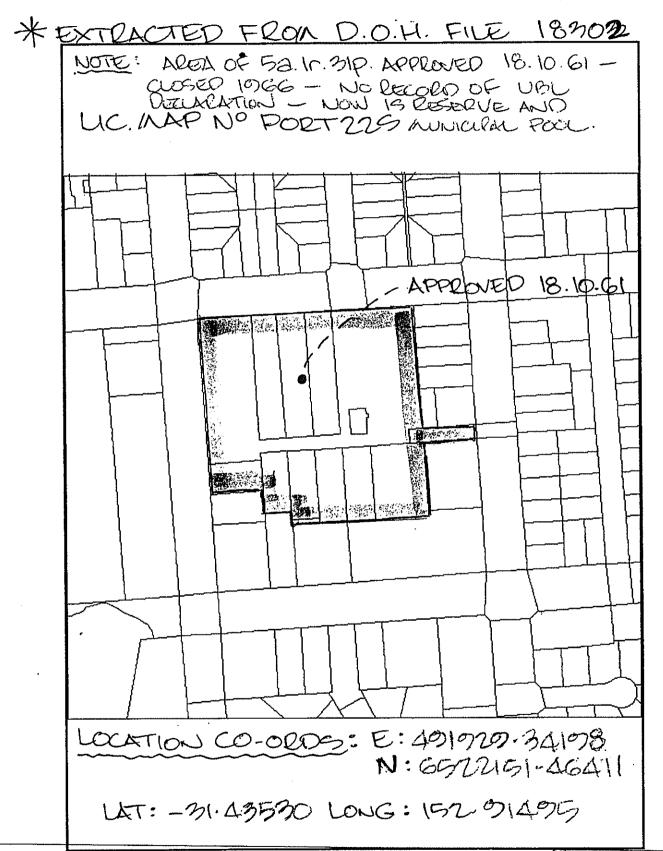
	(Lot 5 Section 16 DP 758852)		
1990 – todate	State of New South Wales		
(1990 – todate) (Reserve 86749 for Public Recreation)			
(Allotment 5 Section 16 Town Port Macquarie)			
1951 – 1990	Crown Land		
(1968 - 1990)	(Reserve 86749 for Public Recreation)		
(1968 - 1968)	(Reserve 86748 from sale or lease generally)		
(1951 - 1968)	(Resumed for Public School, vide Government Gazette 12th January 1951		
	Fol 70)		

NOTIFICATION OF RESUMPTION OF LAND UNDER THE PUBLIC WORKS ACT, 1912, AS AMENDED.

IT is hereby notified and declared by His Excellency the Governor, acting with the advice of the Executive Council, that so much of the land described in the Schedule hereto as is Crown land is hereby appropriated, and so much of the said land as is private property is hereby resumed, under the Public Works Act, 1912, as amended, for the following public purpose, namely, a Public School at PORT MACQUARIE, and that the said land is vested in the Minister of Public Instruction as Constructing Authority on behalf of His Majesty the King.

Dated this twentieth day of December, one thousand nine hundred and fifty.

J. NORTHCOTT, Governor.


By His Excellency's Command,

R. J. HEFFRON, Minister of Public Instruction.

THE SCHEDULE.

All that piece or parcel of land situate in the Municipality of Port Macquarie, town of Port Macquarie, parish of Macquarie, county of Macquarie, and State of New South Wales, being the whole of allotments 5 to 9 inclusive, and allotments 13 to 20 inclusive, of section 16,—having an area of 6 acres 2 roods or thereabouts, and said to be in the possession of A. M. McI. Thomson and others. (120)

: GEO. Nº 4034 - PORT MACQUARIE GARBAGE DEPOT

ENTIPLED INTO TEXT DATA BASE (DA 3.209

MEETING OF THE BOARD OF HEALTH, held at 2 p.m.

on Wednesday, the 11th day of October, 1961.

SED. Nº 403

LOCAL GOVERNMENT ACT:

Application by the Port Macquarie Municipal Council for approval of a site described hereunder for use as a sanitary depot for the disposal of garbage, was considered. Decided that the application be forwarded to the Minister for Health with a recommendation that the situation of the area be approved in accordance with the provisions of Section 283 (4) of the Act:

DESCRIPTION OF AREA:

All that piece or parcel of land situate in Section 15 of the Town of Port Macquarie, Municipality of Port Macquarie, Parish and County of Macquarie commencing at the north western corner of allotment 12, bounded thence easterly by the southern alignment of Bridge Street to the north eastern corner of allotment 18; southerly by the eastern boundary of allotment 18 to its south eastern corner; easterly by the southern boundary of allotment 20 to the western alignment of Lord Street, southerly by that alignment to the north eastern corner of allotment 9; westerly by the northern boundary of allotment 9 to its north western corner; southerly by the eastern boundary of allotment 7 distant 180 feet; westerly by a line parallel to Bridge Street to the western boundary of allotment 3; northerly by that western boundary distant 80 feet; westerly by a line parallel to Bridge Street to the eastern boundary of allotment 10; northerly by that boundary to the north eastern corner of allotment 10; westerly by the northern boundary of allotment 10 to the eastern alignment of Grant Street and finally northerly by that alignment of Grant Street to the point of commencement; comprising a total area of 5 acres, 1 rood, 31 perches.

Description description

Secretary.

for favour of submission to the Minister.

13.10.61.

Submitted for Ministerial approval. ?

J. D. RIMES

Appendix B Results of Field Investigations

CO-OP Studio

PROJECT NAME: Proposed Aquatic Facility

SITE LOCATION: Macquarie Park, Gordon Street, Port Macquarie

TEST LOCATION: Refer to Figure

CLIENT:

BOREHOLE NO:

PAGE:

DATE:

JOB NO:

LOGGED BY:

BH1

1 of 1

GC

18/3/21

RGS21005.6

ВО	REH	OLE DIAM	ETER:	50 mr	n	IN	CLINATION: 90° NORTHING: 6	522218	m [DATU	_		AHD
	Drill	ing and San	npling	1			Material description and profile information			ı	Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity/p characteristics,colour,minor components	article	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
egn i		E (0.10m /	-	_		MH	FILL Sandy Clayey SILT, dark brown, traces of grass roots to 5mm.	of	М	Fb			FILL/TOPSOIL
Push I ube		0.20m E (0.30m	-	- - -		СН	FILL Sandy CLAY, medium plasticity, brown/p brown, sand fine to medium grained, some gra to medium grained, subangular.		× ×	Fb / VSt	HP	250	FILL-CLAY
			2.5	0.5_		МН	TOPSOIL Sandy Clayey SILT, dark grey, trace grass roots to 5mm.	es of	М	Fb			TOPSOIL
			-	-		СН	Sandy CLAY medium plasticity, brown, sand to medium grained, traces of gravel, fine grained,		× ×	Fb / St	HP	150	ALLUVIAL-CLAY
	—		-	-	(//// 6 0 0	SP	o.80m subrounded. Gravelly Clayey SAND fine to coarse grained	d, grey.	∑ W			100	ALLUVIAL-SAND
			2. <u>0</u> - -	1.0_		СН	Gravelly Sandy CLAY medium to high plastic brown with red mottling, gravel fine to medium grained, subrounded.	city,	× ×	Fb / F	HP	80	ALLUVIAL CLAY
			1. <u>5</u>	1. <u>5</u>						Fb/S	HP HP	30 30	
			- - 1. <u>0</u>	2.0			2.10m			St	HP HP	120 150	
			- - - 0.5_	2.5		SP	Gravelly Clayey SAND fine to coarse grained brown. 2.50m	i,	W				ALLUVIAL-SAND
			-	_		CH	CLAY medium to high plasticity, grey. 2.70m Sandy Silty CLAY medium plasticity, mixed		× × ×	Fb / St VSt	HP HP	180 190 250	RESIDUAL EXTREMELY WEATHER! SERPENTINITE
			- 0. <u>0</u>	3.0			grey/green/pale brown, some rock fabric.					230	SEN ENTINITE
			-	_	<i>yy</i> yyy <u>y</u>		Hole Terminated at 3.20 m						
			-0. <u>5</u>	3. <u>5</u>									
			-	-									
			-	-	1	J. T.		0				20 # =	Mainta Commi
Wate	Wat (Dat Wat	er Level e and time sher Inflow er Outflow	nown)	U ₅₀ CBR E ASS B	50mm Bulk s Enviro Acid S	Diame ample nmenta	ter tube sample for CBR testing il sample	S S F F St S VSt V H H	ery Soft oft irm tiff ery Stiff ard riable		25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400	D Dry M Moist W Wet W _p Plastic Limit
	Gi	i nges radational or ansitional stra efinitive or dis	ıta	Field Tests PID DCP(x-y) HP	Photoi Dynan	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)	Density	V L ME	Lo M	ery Lo oose ediun ense	ose n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85%

CLIENT:

CO-OP Studio

PROJECT NAME: Proposed Aquatic Facility JOB NO:

SITE LOCATION: Macquarie Park, Gordon Street, Port Macquarie

TEST LOCATION: Refer to Figure DATE: 18/3/21

BOREHOLE NO:

LOGGED BY:

PAGE:

BH2

1 of 1

GC

RGS21005.6

DRILL TYPE: Track Drill Rig **EASTING:** 491763 m SURFACE RL: 3.5 m

		YPE: OLE DIAM	Track D IETER:	-	m	IN	EASTING: CLINATION: 90° NORTHING:	491763 6522265		SURF. DATU		RL:	3.5 m AHD
	Drill	ing and San	npling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity characteristics, colour, minor component		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
Push Tube		E (0.10m /	-	_		MH	FILL Sandy Clayey SILT, dark grey/dark br traces of grass roots to 5mm.	own,	М	Fb			FILL/TOPSOIL
_		0.30m E	-	-		CH	0.30m FILL Clayey SAND, fine to medium grained grey.	l, dark	1				FILL-SAND
		0.40m 0.60m E 0.70m	3. <u>0</u> - -	0. <u>5</u> - -		CH	FILL Sandy CLAY, medium plasticity, brown/red/grey, sand fine to medium graine gravel, fine to medium grained, subangular.		M × W _P	Fb / VSt	HP HP	350 380	FILL-CLAY
			2. <u>5</u>	1. <u>0</u>		MH	1.00m TOPSOIL Sandy Clayey SILT, dark grey, to grass roots to 5mm.	races of	M				TOPSOIL
	-		- - 2.0	- - 1. <u>5</u>		CH	Sandy CLAY medium to high plasticity, gre fine to coarse grained.	ey, sand	M v Wp	Fb / F	HP HP	60 50	ALLUVIAL-CLAY
٥			- - - 1. <u>5</u>	2.0		СН	Sandy CLAY medium to high plasticity, bro red mottling, sand fine to medium grained, gravel, fine to medium grained, subrounded	traces of		Fb / St	HP HP	120 150 250	
			- - 1. <u>0</u>	- - - 2.5_		CH	2.30m Gravelly Sandy CLAY medium plasticity, property brown, traces of white, gravel is fine to med grained, subrounded/rounded, sand fine to grained.	lium		Voi	HP	300	
			- - 0. <u>5</u> -	3.0_			3.20m				HP	320	
			- 0. <u>0</u>	3. <u>5</u>			Hole Terminated at 3.20 m						
			- - -	-									
Wat Stra	Wat (Dat Wat	er Level e and time si er Inflow er Outflow	hown)	U₅o CBR E ASS B	50mm Bulk s Enviro Acid S	n Diame sample t	ter tube sample or CBR testing I sample òoil Sample	S S S S S S S S S S S S S S S S S S S	ency Very Soft Soft Firm Stiff Very Stiff Hard Friable		25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400	D Dry M Moist W Wet W _p Plastic Limit
LEC Wat	Gi tra De	radational or ansitional stra efinitive or dis rata change	ata -	Field Tests PID DCP(x-y) HP	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Density	V L ME D VE	Lo D D	ery Lo oose lediun ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CO-OP Studio

PROJECT NAME: Proposed Aquatic Facility

SITE LOCATION: Macquarie Park, Gordon Street, Port Macquarie

TEST LOCATION: Refer to Figure

CLIENT:

BOREHOLE NO:

PAGE:

DATE:

JOB NO:

LOGGED BY:

BH3

1 of 1

18/3/21

GC

RGS21005.6

		TYPE: OLE DIAM		Orill Rig 50 mi	m	IN	CLINATION: 90°	EASTING: NORTHING:			SURF.		RL:	3.4 m AHD
	Dri	lling and San	npling				Material description a	nd profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTI characteristics,c	ON: Soil type, plasticity olour,minor components		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T		1.0⊜дат	3.0 <u></u>			MH	to 5mm. 6.20m FILL Sandy CLAY, rof gravel fine to med subrounded/rounded grained, subangular,	. Some gravel, fine to c	n, traces	M × W	Fb / Si	HP	120	FILL/TOPSOIL FILL
u Tool		N=28	2.0 <u></u>	1.5_ -										Borehole collapsing from 1.5m
.21/06/2021 10:45 10.02.00.04 Datgel Lab and In Situ Tool		2.5 @ рат N=1	1. <u>0</u> - - - - -	2.0_							S/Fb			Possible alluvial interface?
			0.5											
T. RGS21005,6 LOGS,GPJ. < <drawngriik< td=""><td></td><td></td><td>0.0<u>0</u></td><td>3.<u>0</u> - - - - 3.<u>5</u></td><td>**************************************</td><td></td><td>Hole abandoned @2 @1.5m Hole Terminated at 2</td><td>.95m due to hole collap .95 m</td><td>sing</td><td></td><td></td><td></td><td></td><td></td></drawngriik<>			0.0 <u>0</u>	3. <u>0</u> - - - - 3. <u>5</u>	**************************************		Hole abandoned @2 @1.5m Hole Terminated at 2	.95m due to hole collap .95 m	sing					
Ma RG NON-CORED BC	Wa (Da	ter Level te and time si ter Inflow ter Outflow	hown)	U ₅₀ CBR E ASS B	50mm Bulk s Enviro Acid S	Diame ample t	ter tube sample for CBR testing il sample Soil Sample		S S F F St S VSt V H H	ncy lery Soft oft irm ctiff fery Stiff lard riable		<2 25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit
RG LIB 1.04.5.GLB	G tr D	anges Gradational or ansitional stra Pefinitive or dis Grata change	ata	Field Test PID DCP(x-y) HP	Photoi Dynan	nic pen	on detector reading (ppm) etrometer test (test depth inter meter test (UCS kPa)	val shown)	Density	V L ME D VD	Lo D D	ery Lo oose lediun ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT:

CO-OP Studio

PROJECT NAME: Proposed Aquatic Facility JOB NO: RGS21005.6

BOREHOLE NO: BH3B

1 of 1

GC

PAGE:

SITE LOCATION: Macquarie Park, Gordon Street, Port Macquarie LOGGED BY:

TEST LOCATION: Rebated 2m West of BH3 DATE: 18/3/21 **DRILL TYPE:** Track Drill Rig **EASTING:** SURFACE RL: 3.4 m **BOREHOLE DIAMETER:** 50 mm INCLINATION: 90° **NORTHING:** DATUM: AHD Field Test Drilling and Sampling Material description and profile information CLASSIFICATION SYMBOL CONSISTENCY DENSITY MOISTURE CONDITION Structure and additional GRAPHIC LOG **Fest Type** METHOD Result RL DEPTH MATERIAL DESCRIPTION: Soil type, plasticity/particle SAMPLES (m) (m) characteristics, colour, minor components FILL/TOPSOIL AD/T Fb МН FILL Clayey SILT, dark grey, traces of grass roots Μ FILL-CLAY **FILL** Sandy CLAY, medium plasticity, brown, traces of gravel fine to medium grained, subangular. CH b / St × 0.30m ^ ΗP 120 3.0 CBR 0.5 0.50m HP 150 2.5 2.0 1.5 RG NON-CORED BOREHOLE - TEST PIT RGS21005.6 LOGS.GPJ <<DrawingFile>> 21/06/2021 10:45 10.02.00.04 Datgel Lab and In Situ Tool 1.5 2.00m 2.0 ALLUVIAL S/Fb МН Clayey SILT dark grey/grey. ΗP 30 ASS 1.0 2.5@mpT ΗP 25 0.5 Hole Terminated at 3.10 m 0.0 3.5 -0.5 LEGEND: UCS (kPa) **Moisture Condition** Notes, Samples and Tests Consistency Very Soft VS <25 D Drv Water S 25 - 50 Moist U₅₀ 50mm Diameter tube sample Soft M Water Level Bulk sample for CBR testing CBR F Firm 50 - 100 W Wet (Date and time shown) Plastic Limit F Environmental sample St Stiff 100 - 200W. Water Inflow Acid Sulfate Soil Sample Very Stiff ASS 200 - 400 Liquid Limit VSt W, ■ Water Outflow В **Bulk Sample** Н Hard >400 1.04.5.GLB Log Fb Friable Strata Changes Field Tests **Density** Very Loose Density Index <15% Gradational or PID Photoionisation detector reading (ppm) Loose Density Index 15 - 35% transitional strata DCP(x-y) Dynamic penetrometer test (test depth interval shown) MD Medium Dense Density Index 35 - 65% Definitive or distict HP Hand Penetrometer test (UCS kPa) D Dense Density Index 65 - 85% strata change VD Very Den Density Index 85 - 100%

CLIENT:

CO-OP Studio

PROJECT NAME: Proposed Aquatic Facility RGS21005.6 JOB NO:

BOREHOLE NO:

LOGGED BY:

PAGE:

DATE:

BH4

1 of 1

18/3/21

GC

SITE LOCATION: Macquarie Park, Gordon Street, Port Macquarie

TEST LOCATION: Refer to Figure

		TYPE: HOLE DIAM		Orill Rig 50 mr	n	IN	EASTING: CLINATION: 90° NORTHING:	491767 6522381		SURFA DATUI		RL:	4.1 m AHD
	D	rilling and San	npling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity characteristics, colour, minor component	y/particle ss	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
PT		E (0.10m	4.0_	_		MH	FILL Sandy Clayey SILT, dark grey/dark bring sand fine to medium grained, traces of grass 5mm.	own, s roots to	М	Fb Fb/			FILL/TOPSOIL
		0.50m E (0.60m	3. <u>5</u>	0.5_	× <i>111</i>	CH	FILL Sandy CLAY, medium plasticity, brown/red/grey, sand fine to medium graine gravel fine to medium grained, subangular.	d, some	M > W	VSt /	HP	300	FILL-CLAY
		1.0 8ур т N=2	3. <u>0</u>	1.0_						St	HP	120	
		1.5@урт N=1	2.5_ -	1. <u>5</u>							HP	130	
שנקפו במט מווט ווו סונט זיסיו	-	2.00m E 2.20m	2. <u>0</u>	2.0	ТИППИ	МН	Clayey SILT dark grey, some organics, sor	770	W	S			ALLUVIAL-SILT
ZINONZOZI IV.49 IV.OZ.OV.O4 Datger Lab and III SITU TOO			1. <u>5</u>	2.5 -		IVIII	gravel, fine to medium grained, subrounded		•	3			RESIDUAL
				-		CLL	2.90m 2.95m CLAV modium to high placticity, vallous with		Δ.	C4	HP	110	
5000			1.0 <u></u>	3.0_		(CH)	CLAY medium to high plasticity, yellow with mottling. Hole Terminated at 2.95 m	r grey	^ ~ ∑	St			
1501 711 10001000.01			0. <u>5</u>	3. <u>5</u>									
Ma Market Ba	- (□ - W	Vater Level Date and time sh Vater Inflow Vater Outflow	hown)	Notes, Sar U ₅₀ CBR E ASS B	50mm Bulk s Enviro Acid S	Diame ample t	eter tube sample for CBR testing al sample Soil Sample	S S F F St S VSt V H H	ery Soft oft irm tiff ery Stiff ard riable		50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit
		Changes Gradational or transitional stra Definitive or dis strata change	ata	Field Tests PID DCP(x-y) HP	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)	Density	V L ME D VD	Lo M De	ery Lo oose ediun ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT:

CO-OP Studio

PROJECT NAME: Proposed Aquatic Facility JOB NO: RGS21005.6

BOREHOLE NO:

PAGE:

BH5

1 of 1

GC

SITE LOCATION: Macquarie Park, Gordon Street, Port Macquarie LOGGED BY:

TEST LOCATION: Refer to Figure DATE: 18/3/21

DRILL TYPE: Track Drill Rig EASTING: 491745 m SURFACE RL: 4.5 m

		TYPE: OLE DIAM		Orill Rig 50 mr	m	IN	EASTING: CLINATION: 90° NORTHING:	491745 6522378		SURF. DATU		RL:	4.5 m AHD
	Dri	lling and San	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity characteristics, colour, minor component		MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
PT		E 0.10m	-	-		MH	FILL Sandy Clayey SILT, dark grey/dark br traces of grass roots to 5mm.	own,	М	Fb			FILL/TOPSOIL
		0.50m E (0.60m	4. <u>0</u>	0. <u>5</u>	8 5 9 9 9 9	СН	FILL Gravelly Sandy CLAY, medium plastic red/brown/grey/dark grey, gravel fine to mer grained, subangular.	oity, dium	M < W _P	Fb / VSt	HP	350 380	FILL-CLAY
			3. <u>5</u> 3.5_	1.0 -		СН	FILL Sandy CLAY medium plasticity, red/bt traces to some gravel, fine grained, subrou	rown, Inded.			HP	300	
00			3. <u>0</u>	1. <u>5</u>					M > W _P	St	HP HP	180 190	
4 Datgel Lab and In Situ	-		2. <u>5</u> -	2.0									
1/06/2021 10:45 10:02.00.0		2.50m E (2.60m	2. <u>0</u>	2. <u>5</u>			2.80m						
ngFile>> <			1.5	3.0		MH	Sandy Clayey SILT pale grey/grey, some of 3.00m	organics.	М	F	HP	60	ALLUVIAL-SILT
LOGS.GPJ < <draw< th=""><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td>Hole Terminated at 3.00 m</td><td></td><td></td><td></td><td></td><td></td><td></td></draw<>			-	-			Hole Terminated at 3.00 m						
RG LIB 1.04 S.GLB LOG RG NON-CORED BOREHOLE - TEST PIT RGS21005.6 LOGS.GPJ < <drawngfile>> 21/06/2021 1045 10 02.00.04 Datget Lab and in Situ Tool in</drawngfile>			1. <u>0</u>	3.5									
LE CKEN	GEND:		<u> </u>	Notes, Sar	nples ar	d Tests	<u> </u>	Consister				CS (kPa	
Wa Wall-rooken Ball Street	Wa Da Wa	ter Level te and time si ter Inflow ter Outflow anges	hown)	U₅o CBR E ASS B	Bulk s Enviro Acid S	sample f onmenta	ter tube sample or CBR testing I sample soil Sample	S S F Fi St S VSt V H H	ery Soft oft rm tiff ery Stiff ard iable		50 10 20	25 5 - 50 0 - 100 00 - 200 00 - 400 100	1 -
KG LIB 1.04.5.GLB	G tr D	aradational or ansitional stra efinitive or dis trata change	ata	Field Test PID DCP(x-y) HP	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Density	V L MD D VD	Lo M D	ery Lo oose ledium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT:

CO-OP Studio

PROJECT NAME: Proposed Aquatic Facility

SITE LOCATION: Macquarie Park, Gordon Street, Port Macquarie LOGGED BY: GC **TEST LOCATION:** Refer to Figure DATE: 18/3/21

BOREHOLE NO:

PAGE:

JOB NO:

BH6

1 of 1

RGS21005.6

SURFACE RI : DRILL TYPE: Track Drill Rig FASTING: 491854 m 5 0 m

		TYPE: IOLE DIAN	Track [IETER :	_	n	IN	EASTING: CLINATION: 90° NORTHING:	491854 6522387		OATU		RL:	5.0 m AHD
	Dri	lling and Sar	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity characteristics,colour,minor component	y/particle s	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
P		E (0.10m	-			МН	FILL Sandy Clayey SILT, dark grey/dark br traces of grass roots to 5mm.	own,	М	Fb			FILL/TOPSOIL
		0.60m E 0.70m	- 4. <u>5</u> -	- 0.5_ -	9 9 9 9 9 9 9 9	CH	FILL Gravelly Sandy CLAY, medium plastic red/brown/grey, gravel, fine to medium grain subangular.	city, ned,	M > W _P	Fb / VSt	HP HP	300 250	FILL-CLAY
		1.0 @ур т N=3	4.0 <u></u>	1.0_ - - -									
		1.80m	3. <u>5</u> -	1. <u>5</u>	8					Fb / Si	HP	120	
and in Situ 100	-	E 2.00m	3. <u>0</u>	2.0			2.10m				HP	130	
0.02.00.04 Datgel Lar		2.5 ⊚p a⊤	- - - 2.5	2.5		MH	Sandy Clayey SILT, dark grey/grey, some fine grained subrounded/rounded.	gravel,	W	S	HP	25	ALLUVIAL-SILT
655 TO 10/2021 10:45 TO 16:45 TO 16:4		N=5	- - -			CH	Sandy Silty CLAY medium to high plasticit brown, sand fine to coarse grained, traces of fine grained, subrounded/rounded.	y, pale of gravel,	M > W _P	Fb / Si	HP	150	ALLUVIAL-CLAY
שמושא			2.0	3.0	<u> </u>		Hole Terminated at 3.00 m						
RG LIB TURE SCHEL LOG RG NOTH-CONFLD BOYARHOLE - IEST PTI RGSZINOS GFJ < CLIRAMINGFIRe> ZINOZZZZI 10/35 10/3ZXXX 4 Daggel Lab and in Situ Tool			- 1. <u>5</u> -	3. <u>5</u>									
LEC BOREHOLE - TE	GEND:		-	Notes, Sar					ency Very Soft Soft		<2	CS (kPa 25 5 - 50	D Dry
Too he hour-coke	(Da - Wa 4 Wa	iter Level ite and time s iter Inflow iter Outflow anges	hown)	U ₅₀ CBR E ASS B	Bulk s Enviro Acid S Bulk S	ample f nmenta	ter tube sample for CBR testing Il sample Soil Sample	F F St S VSt N	Firm Stiff Very Stiff Hard Friable		50 10 20 >4) - 100)0 - 200)0 - 400 100	W _L Liquid Limit
KG LIB 1.04.5.GLE	tı	Gradational or cansitional stra Definitive or distrata change	ata	Field Tests PID DCP(x-y) HP	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Density	V L MC D VD	Lo M D	ery Lo oose ledium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

Appendix C Laboratory Test Result Sheets

Comparison of Contamination Analysis Results with Adopted Investigation Levels (Results in mg/kg)

National Environment Protection (Assessment of Site Contamination) Measure (NEPM 2013)

REGIONAL GEOTECHNICAL SOLUTIONS

Client:

CO-OP Studio

Job No.

RGS21005.6

Project:

Proposed Aquatic Facility Location: Gordon Street, Port Macquarie

SAMPLE	DEPTH	Material	Asbestos		TOTAL RECO	VERABLE HYD	ROCARBONS	S		PAH	DDT+DDE	Aldrin	PCB		BTEX				Heavy	Metals			
	(m)		Presence	C6-C10	C10-C16	C16-C34	C34-C40	TOTAL	Total	b-a-p (TEQ)	Pesticides	Pesticides		Sum	Napthalene	As	Cd	Cr (Total)#	Cu	Pb	Ni	Zn	Hg
BH1	0.0 - 0.1	Fill - topsoil		<10	<50	<100	<100	<50	<0.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	27	<1	183	26	17	24	27	<0.1
BH1	0.2 - 0.3	Fill - Clay]												<5	<1	215	8	8	30	7	<0.1
BH2	0.0 - 0.1	Fill - topsoil]												5	<1	54	10	8	12	60	<0.1
BH2	0.3 - 0.4	Fill - sand														<5	<1	14	<5	<5	3	8	<0.1
BH2	0.6 - 0.7	Fill - Clay		<10	<50	<100	<100	<50	<0.5	0.6	< 0.05	<0.05	<0.1	<0.2	<1	<5	<1	748	32	18	94	13	<0.1
BH4	0.0 - 0.1	Fill - topsoil]												<5	<1	196	23	26	50	26	<0.1
BH4	0.5 - 0.6	Fill - Clay														8	<1	282	19	24	46	18	<0.1
BH4	1.0 - 1.1	Fill - Clay	No													<5	<1	360	24	20	165	73	<0.1
BH4	2.0 - 2.2	Fill - Clay		<10	<50	<100	<100	<50	<0.5	0.6	< 0.05	<0.05	<0.1	<0.2	<1	<5	<1	170	45	7	23	14	<0.1
BH5	0.0 - 0.1	Fill - topsoil														<5	<1	211	24	27	58	29	<0.1
BH5	0.5 - 0.6	Fill - Clay		<10	<50	<100	<100	<50	1.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	29	<1	438	30	10	57	13	<0.1
BH5	2.5 - 2.6	Fill - Clay]												<5	2	317	82	7	38	15	<0.1
BH6	0.0 - 0.1	Fill - topsoil		"												<5	<1	214	16	26	36	44	<0.1
BH6	0.6 - 0.7	Fill - Clay		1												<5	<1	551	15	12	120	10	<0.1
BH6	1.0 - 1.1	Fill - Clay	No	"																			<0.1
BH6	1.8 - 2.0	Fill - Clay]												14	2	715	59	14	31	<5	<0.1
BH6	2.5 - 2.7	Fill - Clay		1						j						<5	<1	209	6	<5	27	<5	<0.1
D1	BH5 (2.5-2.6)	<u>-</u>		•	i i			į								/)	1	322	78	~>	49	10	<0.1
RPD	B110 (2.0 2.0)									-						5	67%	-2%	78 5%	0%	-25%	-24%	<0.2
CRITERIA (NEPM 2013	,,																6/%	-Z%	5%	0%	-25%	-24%	+
Health Investigation Health Screening Le	Level (HIL)*: vel (HSL)**			NL	NL	NL	NL	NL	300	3	400	10	1			300	90	300	17000	600	1200	30000	80
Ecological Screening Ecological Investiga				180	120	300	2800								170	100		780	35	1100	30	140	

CRITERIA:

* Health Based Investigation Levels for Recreational Use (NEPM 2013)

** Health Screening Level (F2) for residential land use and fine grained soil (clay), 0 - 1m depth

^{***} Ecological Screening Level for recreational land use

[@] Ecological Investigation Level - aged (>2 years) for recreational landuse

[#] Total Chromium (CRIII + CRVI)

CERTIFICATE OF ANALYSIS

Work Order : ES2110756

Client : REGIONAL GEOTECHNICAL SOLUTION

Contact : MR TIM MORRIS

Address : 1/12 Jindalee Road Port Macquarie NSW 2444

Telephone : +61 02 6553 5641

: Proposed Aquatic Facility Project

Order number

C-O-C number Sampler Site Quote number : EN/222

No. of samples received : 19 No. of samples analysed : 19 Page : 1 of 17

Laboratory : Environmental Division Sydney

Contact : Customer Services ES

: 277-289 Woodpark Road Smithfield NSW Australia 2164 Address

Telephone : +61-2-8784 8555

Date Samples Received : 25-Mar-2021 09:50

Date Analysis Commenced : 26-Mar-2021

Issue Date · 01-Apr-2021 12:20

Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with **Quality Review and Sample Receipt Notification.**

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Position Signatories Accreditation Category

Alana Smylie Asbestos Identifier Newcastle - Asbestos, Mayfield West, NSW Aleksandar Vujkovic Laboratory Technician Newcastle - Inorganics, Mayfield West, NSW Ankit Joshi Inorganic Chemist Sydney Inorganics, Smithfield, NSW Celine Conceicao Senior Spectroscopist Sydney Inorganics, Smithfield, NSW Dian Dao Senior Chemist - Inorganics Sydney Inorganics, Smithfield, NSW Edwandy Fadjar Organic Coordinator Sydney Organics, Smithfield, NSW Ivan Taylor Analyst Sydney Inorganics, Smithfield, NSW

Page : 2 of 17 Work Order : ES2110756

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : Proposed Aquatic Facility

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

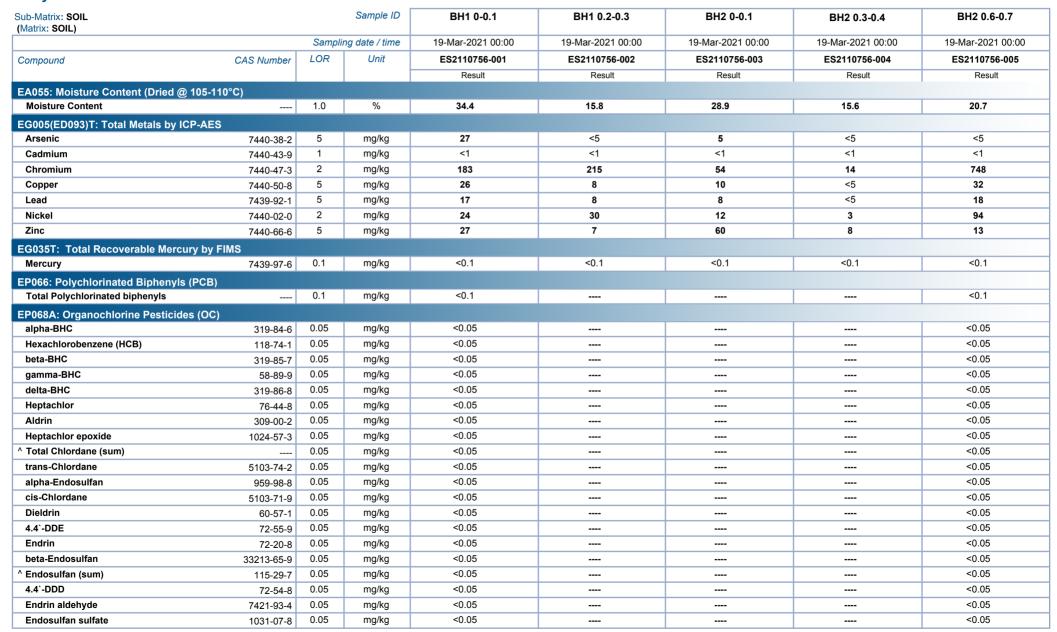
Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

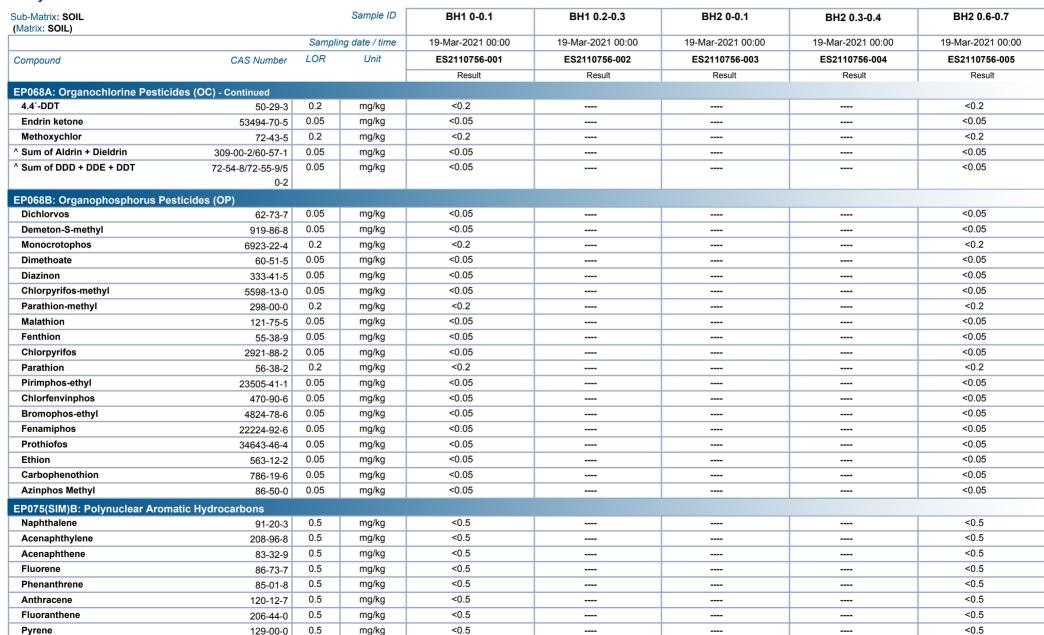
LOR = Limit of reporting


- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests
- ~ = Indicates an estimated value.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP068: Where reported. Total Chlordane (sum) is the sum of the reported concentrations of cis-Chlordane and trans-Chlordane at or above the LOR.
- EP068: Where reported, Total OCP is the sum of the reported concentrations of all Organochlorine Pesticides at or above LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Trace' Asbestos fibres ("Free Fibres") detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200 Legend
- EA200 'Ch' Chrysotile (white asbestos)
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200: For samples larger than 30g, the <2mm fraction may be sub-sampled prior to trace analysis as outlined in ISO23909:2008(E) Sect 6.3.2-2
- ED007 and ED008: When Exchangeable Al is reported from these methods, it should be noted that Rayment & Lyons (2011) suggests Exchange Acidity by 1M KCI Method 15G1 (ED005) is a more suitable method for the determination of exchange acidity (H+ + Al3+).
- EA200: 'Yes' Asbestos detected by polarised light microscopy including dispersion staining
- EA200: 'No*' No asbestos found, at the reporting limit of 0.1g/kg, by polarised light microscopy including dispersion staining. Asbestos material was detected and positively identified at concentrations estimated to be below 0.1g/kg.
- EA200: 'No' No asbestos found at the reporting limit 0.1g/kg, by polarised light microscopy including dispersion staining.

Page : 3 of 17 Work Order : ES2110756

Client : REGIONAL GEOTECHNICAL SOLUTION

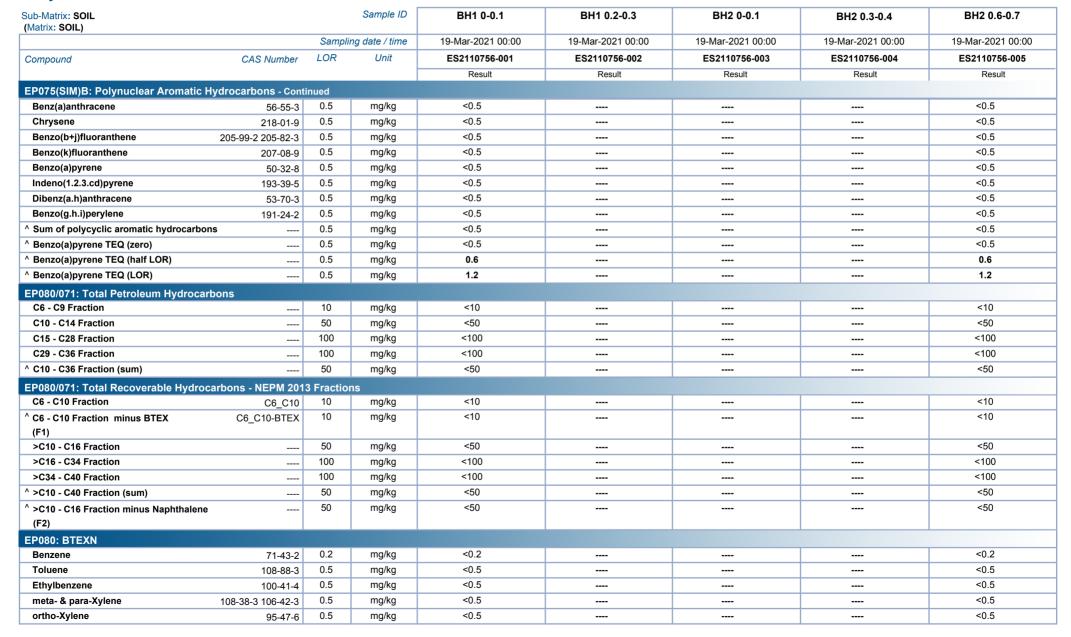
Project : Proposed Aquatic Facility



Page : 4 of 17 Work Order : ES2110756

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : Proposed Aquatic Facility



Page : 5 of 17 Work Order : ES2110756

Client : REGIONAL GEOTECHNICAL SOLUTION

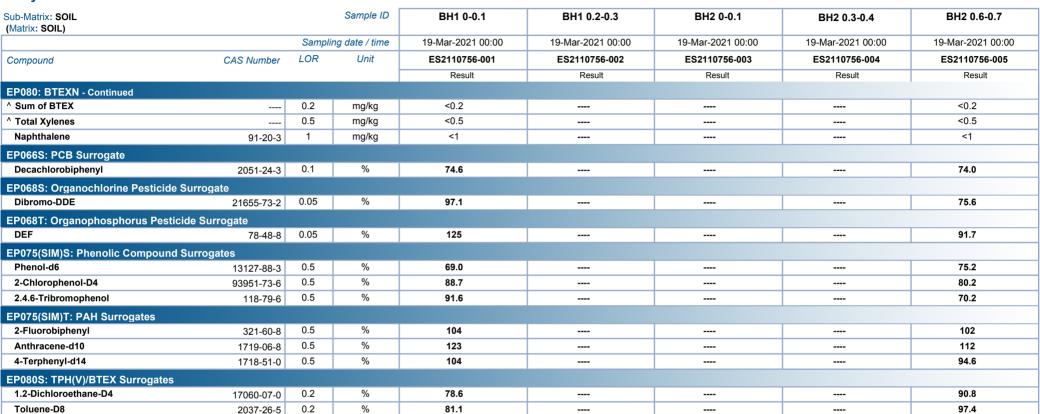
Project : Proposed Aquatic Facility

Page : 6 of 17 Work Order : ES2110756

Client : REGIONAL GEOTECHNICAL SOLUTION

0.2

460-00-4

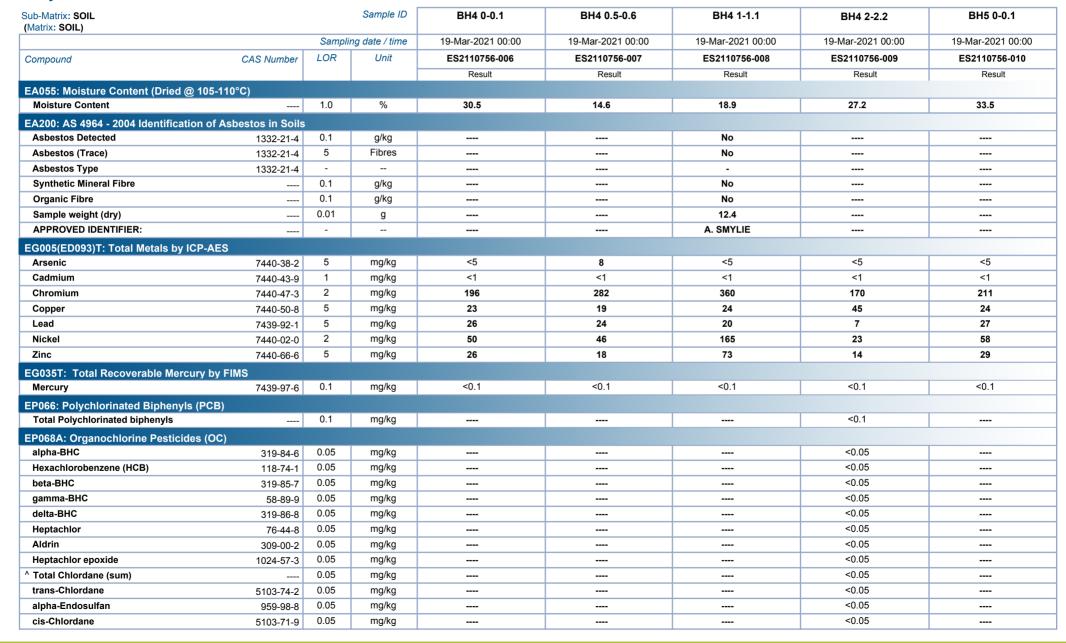

%

82.9

Project : Proposed Aquatic Facility

Analytical Results

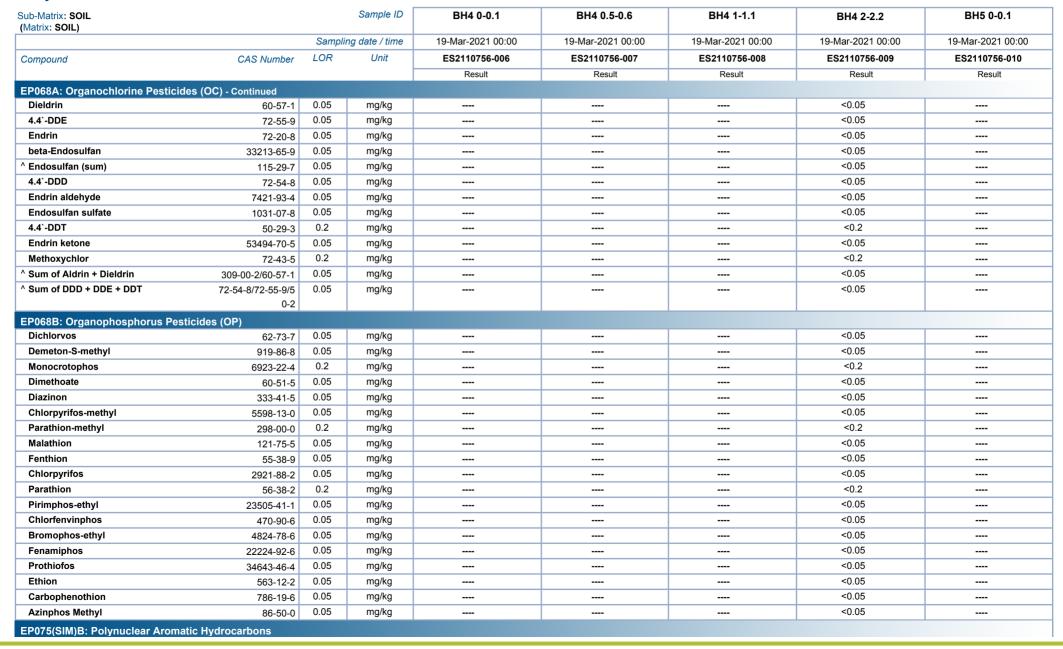
4-Bromofluorobenzene


79.5

Page : 7 of 17 Work Order : ES2110756

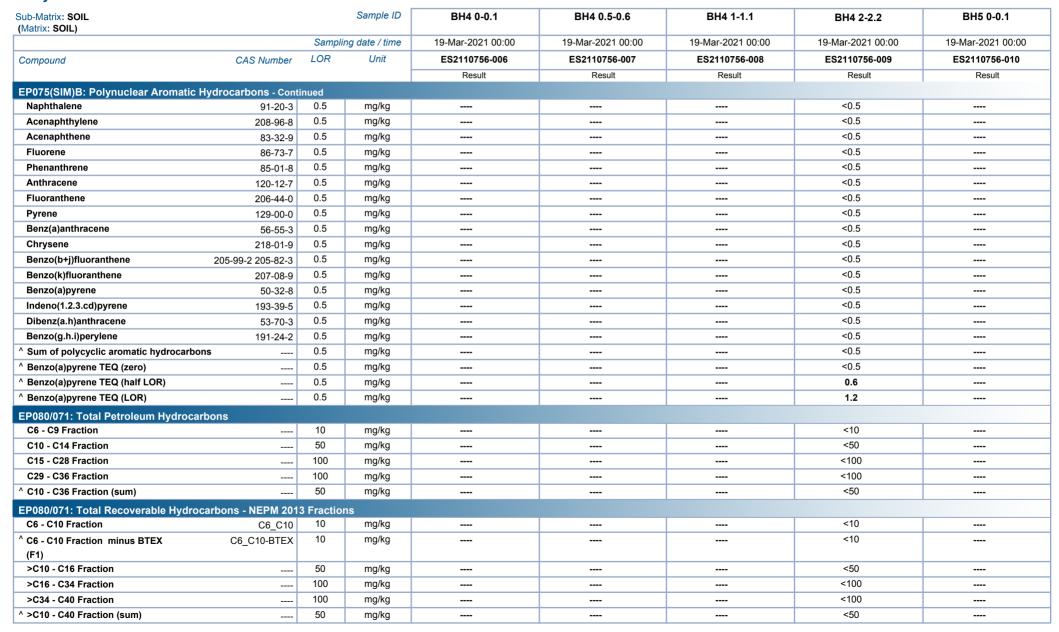
Client : REGIONAL GEOTECHNICAL SOLUTION

Project : Proposed Aquatic Facility



Page : 8 of 17 Work Order : ES2110756

Client : REGIONAL GEOTECHNICAL SOLUTION


Project : Proposed Aquatic Facility

Page : 9 of 17 Work Order : ES2110756

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : Proposed Aquatic Facility

Page : 10 of 17 Work Order : ES2110756

^ >C10 - C16 Fraction minus Naphthalene

Client : REGIONAL GEOTECHNICAL SOLUTION

Sample ID

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

%

%

%

%

%

%

%

%

%

%

%

%

Sampling date / time

LOR

0.2

0.5

0.5

0.5

0.5

0.2

0.5

0.1

0.05

0.05

0.5

0.5

0.5

0.5

0.5

0.5

0.2

0.2

0.2

CAS Number

71-43-2

108-88-3

100-41-4

95-47-6

91-20-3

2051-24-3

21655-73-2

13127-88-3

93951-73-6

118-79-6

321-60-8

1719-06-8

1718-51-0

17060-07-0

2037-26-5

460-00-4

78-48-8

108-38-3 106-42-3

EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions - Continued

BH4 0-0.1

19-Mar-2021 00:00

ES2110756-006

Result

BH4 0.5-0.6

19-Mar-2021 00:00

ES2110756-007

Result

BH4 1-1.1

19-Mar-2021 00:00

ES2110756-008

Result

BH4 2-2.2

19-Mar-2021 00:00

ES2110756-009

Result

< 50

<0.2

<0.5

< 0.5

< 0.5

<0.5

< 0.2

< 0.5

<1

79.2

102

102

72.3

81.0

79.4

99.8

104

94.4

87.4

95.9

81.8

Project : Proposed Aquatic Facility

Analytical Results

Sub-Matrix: SOIL

(Matrix: SOIL)

Compound

(F2) EP080: BTEXN Benzene

Toluene

Ethylbenzene

ortho-Xylene

^ Sum of BTEX

^ Total Xvlenes

Naphthalene

Dibromo-DDE

Phenol-d6

2-Chlorophenol-D4

2-Fluorobiphenyl

Anthracene-d10

4-Terphenyl-d14

Toluene-D8

1.2-Dichloroethane-D4

4-Bromofluorobenzene

2.4.6-Tribromophenol

EP075(SIM)T: PAH Surrogates

EP080S: TPH(V)/BTEX Surrogates

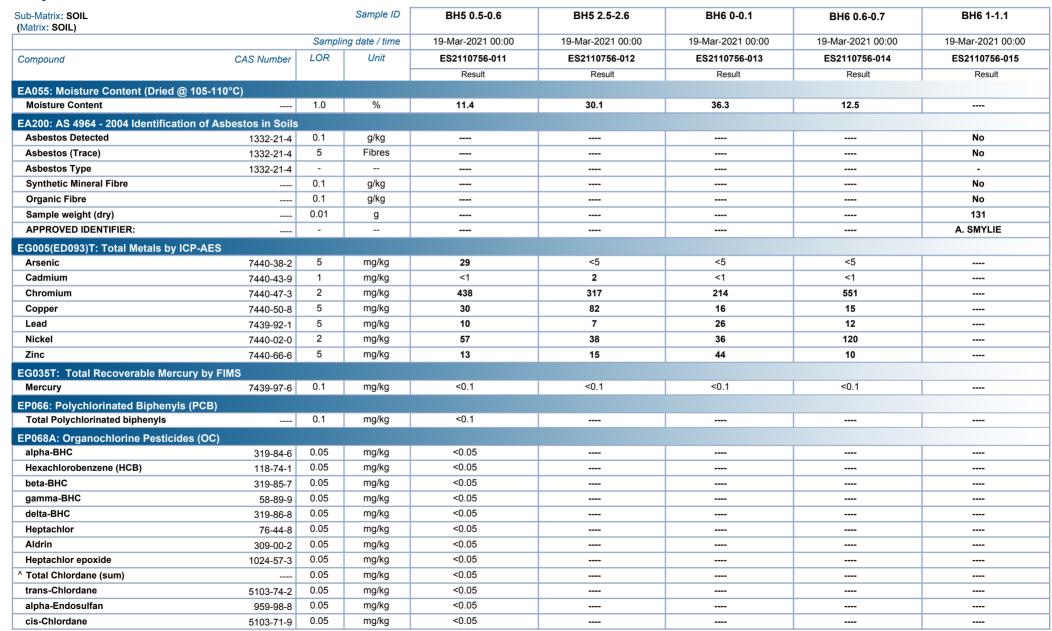
meta- & para-Xylene

EP066S: PCB Surrogate
Decachlorobiphenyl

EP068S: Organochlorine Pesticide Surrogate

EP068T: Organophosphorus Pesticide Surrogate

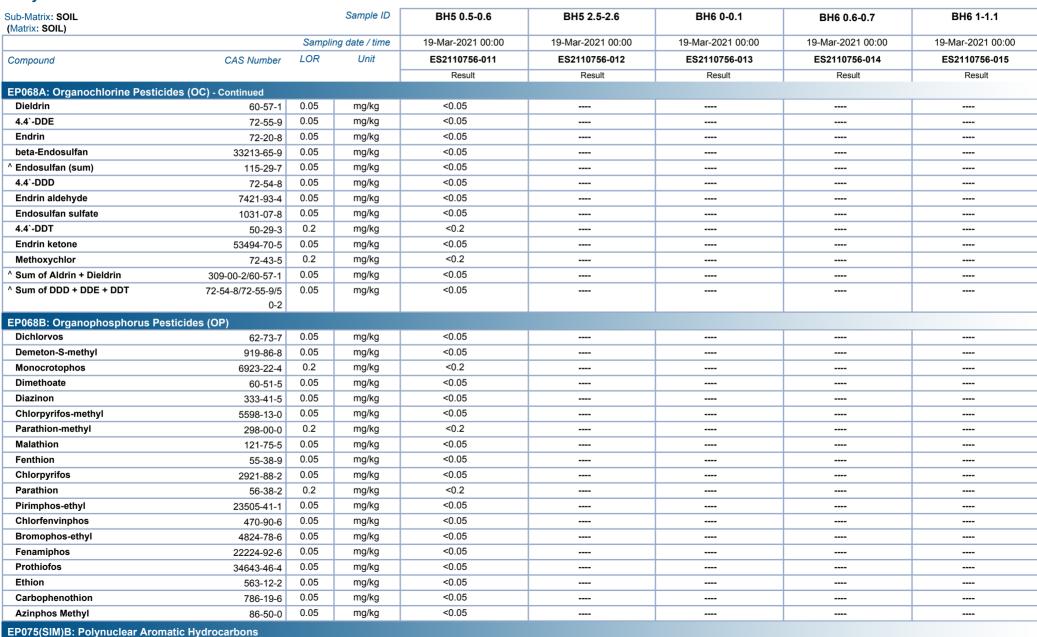
EP075(SIM)S: Phenolic Compound Surrogates



Page : 11 of 17 Work Order : ES2110756

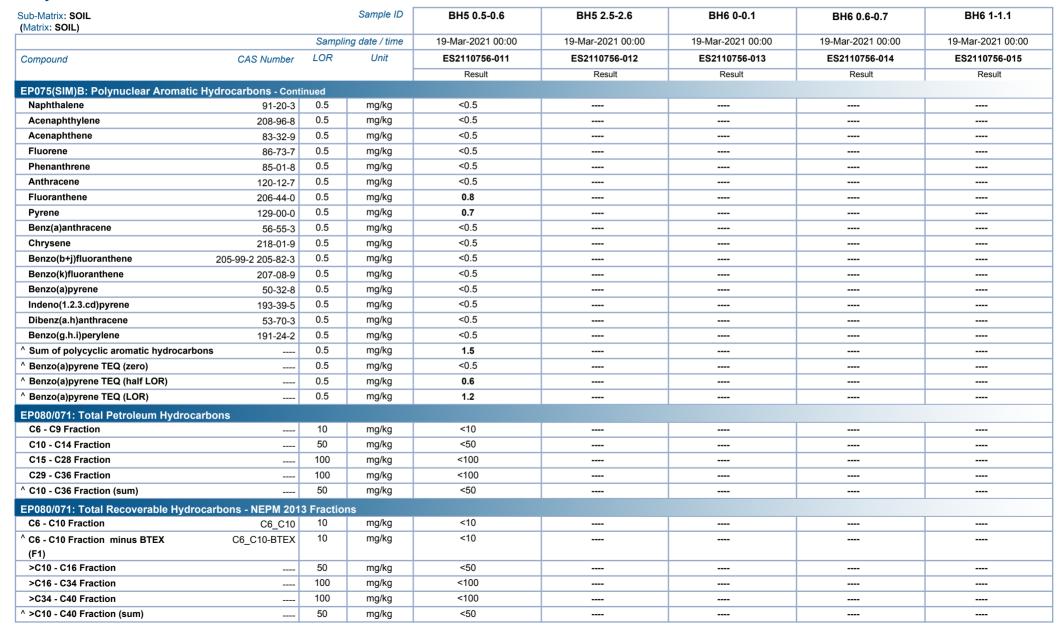
Client : REGIONAL GEOTECHNICAL SOLUTION

Project : Proposed Aquatic Facility



Page : 12 of 17 Work Order : ES2110756

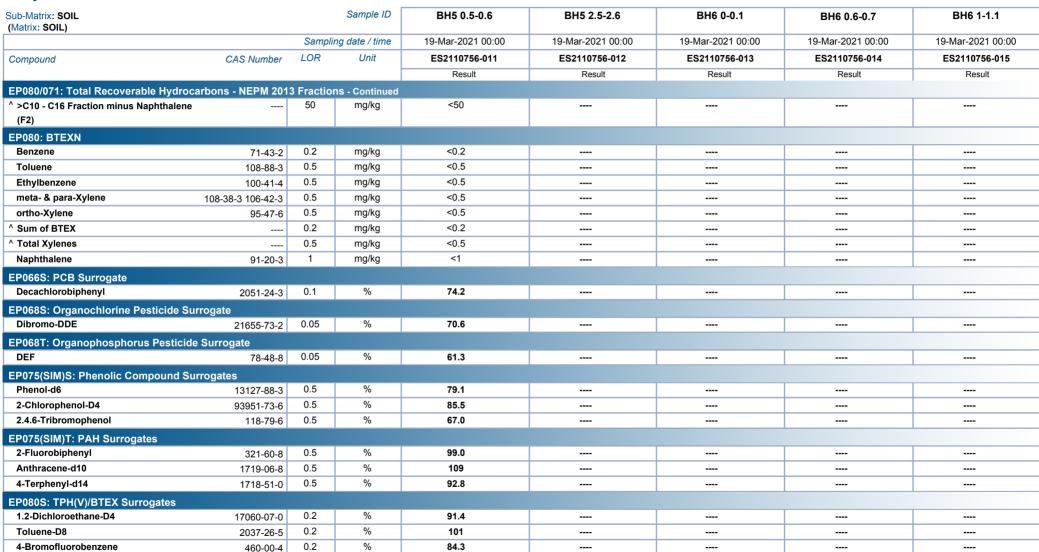
Client : REGIONAL GEOTECHNICAL SOLUTION


Project : Proposed Aquatic Facility

Page : 13 of 17 Work Order : ES2110756

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : Proposed Aquatic Facility



Page : 14 of 17 Work Order : ES2110756

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : Proposed Aquatic Facility

Page : 15 of 17 Work Order : ES2110756

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : Proposed Aquatic Facility

ub-Matrix: SOIL Matrix: SOIL)			Sample ID	BH6 1.8-2	BH6 2.5-2.7	BH6 2.5-2.7	D1	
		Samplii	ng date / time	19-Mar-2021 00:00	19-Mar-2021 00:00	19-Mar-2021 00:00	19-Mar-2021 00:00	
Compound	CAS Number	LOR	Unit	ES2110756-016	ES2110756-017	ES2110756-018	ES2110756-019	
				Result	Result	Result	Result	
EA001: pH in soil using 0.01M CaCl ex	tract							
pH (CaCl2)		0.1	pH Unit			4.7		
EA002: pH 1:5 (Soils)								
pH Value		0.1	pH Unit			5.0		
A010: Conductivity (1:5)								
Electrical Conductivity @ 25°C		1	μS/cm			16		
EA055: Moisture Content (Dried @ 105	-110°C)							
Moisture Content		0.1	%			18.3		
Moisture Content		1.0	%	30.3	22.6		27.5	
EA150: Soil Classification based on Pa								
Clay (<2 µm)		1	%			29		
EA152: Soil Particle Density		•	7-					
Soil Particle Density Soil Particle Density (Clay/Silt/Sand)		0.01	g/cm3			2.63		
ED007: Exchangeable Cations		0.01	grama			2.00		
Exchangeable Calcium		0.1	meg/100g			0.9		
Exchangeable Magnesium		0.1	meq/100g			0.6		
Exchangeable Potassium		0.1	meq/100g			<0.1		
Exchangeable Sodium		0.1	meq/100g			0.2		
Cation Exchange Capacity		0.1	meq/100g			1.7		
EG005(ED093)T: Total Metals by ICP-A		0	med reed					
Iron	7439-89-6	0.005	%			2.53		
Arsenic	7440-38-2	5	mg/kg	14	<5		5	
Cadmium	7440-43-9	1	mg/kg	2	<1		1	
Chromium	7440-47-3	2	mg/kg	715	209		322	
Copper	7440-50-8	5	mg/kg	59	6		78	
Lead	7439-92-1	5	mg/kg	14	<5		7	
Nickel	7440-02-0	2	mg/kg	31	27		49	
Zinc	7440-66-6	5	mg/kg	<5	<5		19	
EG035T: Total Recoverable Mercury b			- 0					
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1		<0.1	
EP004: Organic Matter	7 100 07 0		5 5					
Organic Matter		0.5	%			1.2		
Total Organic Carbon		0.5	%			0.7		

Page : 16 of 17 Work Order : ES2110756

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : Proposed Aquatic Facility

Analytical Results Descriptive Results

Sub-Matrix: SOIL

Method: Compound	Sample ID - Sampling date / time	Analytical Results
EA200: AS 4964 - 2004 Identification of Asbesto	s in Soils	
EA200: Description	BH6 1-1.1 - 19-Mar-2021 00:00	Mid brown soil.
EA200: Description	BH4 1-1.1 - 19-Mar-2021 00:00	Mid brown soil.

Page : 17 of 17 Work Order : ES2110756

Client : REGIONAL GEOTECHNICAL SOLUTION

Project : Proposed Aquatic Facility

Surrogate Control Limits

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry) 9854 (Biology).

(SOIL) EA200: AS 4964 - 2004 Identification of Asbestos in Soils

(SOIL) EA150: Soil Classification based on Particle Size

(SOIL) EA152: Soil Particle Density

LABORATORY TEST REQUEST

PROJECT NUMBER:

CLIENT:

Co-Op

PROJECT:

Proposed Aquatic Facility

Gordon Street, Port Macquare

DATE:

19/03/2021

TEST LABORATORY:

LOCATION:

277-289 Woodpark Road, Smithfield NSW 2164

SAMPLE	LOCATION &	DEPTH:	SAMPLE TYPE	Sutie 16	S-2 (8 Metals)	P-22	EA200 (Asbestos)		
BH1	0	0.1	SOIL	1				Envi	ronmental Di
BH1	0.2	0.3	SOIL		1				ey ork Order Refere
 вн2	0	0.1	SOIL		1			Ē	S2110
BH2	0.3	0.4	SOIL		1			_	
BH2	0.6	0.7	SOIL	1					
BH4	0	0.1	SOIL		1			_	
вн4	0.5	0.6	SOIL		1			!eieph	one - 61-2-8784-859
вн4	1	1.1	SOIL		1 >		1	: elepti	one - or 2 or or
ВН4	2	2.2	SOIL	1					
BH5	0	0.1	SOIL		1				
BH5	0.5	0.6	SOIL	1			·		
вн5	2.5	2.6	ŞOIL		1			· · · · · · · · · · · · · · · · · · ·	
вн6	0	0.1	SOIL	3.1	1				
вн6	0.6	0.7	SOIL		1				
вн6	1	1.1	SOIL				1		
 BH6	1.8	2	SOIL		1				
вн6	2.5	2.7	SOIL		1	**************************************			
вн6	2.5	2.7	SOIL			1			
 D1			SOIL		1				·
	·								
 ······································	SubTo	tal		4	13	1	2		

Email:

tim.morris@regionalgeotech.com.au

grant.c@regionalgeotech.com.au

Regional Geotechnical Solutions Ply Ltd ABN 51141848820

44 Bent Street Wingham NSW 2429

Ph. (02) 6553 5641

www.regionalgeotech.com.au

pec: From of 25/3/4 9:500

Appendix D Letter from Dr David Tully CEnvP SC

Contaminated Land Solutions

24 May 2023

Ref: CLS0268.L01.1

Regional Geotechnical Solutions Pty Ltd 1/12 Jindalee Road Port Macquarie NSW 2444

For the attention of Tim Morris

Dear Tim,

RE: Review of Stage 1 Site Contamination Assessment Report – Proposed Aquatic Facility, Gordon Street, Port Macquarie

I, Dr David Tully of Contaminated Land Solutions Pty Ltd, am a Certified Environmental Practitioner Site Contamination Specialist (General Certified Environmental Practitioner certification no. 1138 and Site Contamination Specialist certification no. SC40084).

I confirm I have reviewed the Regional Geotechnical Solutions report entitled "Stage 1 Site Contamination Assessment Report – *Proposed Aquatic Facility, Gordon Street, Port Macquarie*" (Ref: RGS21005.6.1-AC), dated 23 May 2023 and a copy of which I have retained.

I can confirm that on the basis of the information contained within the report, I support the conclusions and recommendations provided therein.

Should the client, regulator or local authority have any queries regarding the report review, I can be contacted by e-mail via david.tully@contaminatedlandsolutions.com.au. Specific queries regarding the content of the report should be addressed to Tim Morris at Regional Geotechnical Solutions.

For and on behalf of

Contaminated Land Solutions Pty Ltd

Dr David Tully CEnvP SC

Director

Contaminated Land Solutions Pty Ltd

Contaminated Land Solutions Pty Ltd 10 Heath Road Crafers West SA 5152 0410 012 292

CO-Op Studio

Stage 2 Site Contamination Assessment

Proposed Development

Aquatic Facility – Gordon Street, Port Macquarie

Report No. RGS21005.6-AG

22 September 2024

Manning-Great Lakes
Port Macquarie
Coffs Harbour

Email grant.c@regionalgeotech.com.au

Web: www.regionalgeotech.com.au

RGS21005.6-AG

22 September 2024

CO-Op Studio 35 Richards Avenue Surrey Hills NSW 2010

Attention: David Huntley

Dear David,

RE: Proposed Development – Aquatic Facility – Gordon Street, Port Macquarie Stage 2 Site Contamination Assessment

As requested, Regional Geotechnical Solutions Pty Ltd (RGS) has undertaken a Stage 2 Site Contamination Assessment for the proposed development at Gordon Street, Port Macquarie.

Presented herein is a summary of the work undertaken, the findings of the Stage 2 site contamination assessment and a review of the laboratory test results compared to the NEPM (2013) guidelines. The assessment found elevated concentrations of copper, chromium, nickel and total recoverable hydrocarbons in several locations across the site that exceeded the adopted Ecological Investigation Levels (EILs) for Recreational land use.

The site can be made suitable for the proposed aquatic facility with regard to soil contamination, provided the recommendations and advice of this report are adopted, and demolition and site preparation works are conducted in accordance with appropriate site management protocols and legislative requirements.

The work presented herein was reviewed by Dr David Tully CEnvP SC. A copy of Dr Tully's letter pertaining to the review is appended to the report.

If you have any questions regarding this project, please contact the undersigned.

For and on behalf of Regional Geotechnical Solutions Pty Ltd

Prepared by Reviewed by

Grant Colliar Andrew Hills

Senior Engineering Geologist Associate Environmental Engineer

Aldle

Table of Contents

1		NTRO	DUCTION
2	F	PREVIC	DUS INVESTIGATION
3	(GUIDE	LINES AND ASSESSMENT CRITERIA
4	٨	METHC	DDOLOGY
5	S	SITE SE	TTING AND HISTORY
	5.1	Site	Description
	5.2	2 Site	History Summary
	5.3	Ge	ology
	5.4	Site	Observations
6	(CONC	EPTUAL SITE MODEL
	6.1	Rev	vised Conceptual Site Model
	6.2	Pot	entially Sensitive Receptors
	6.3	8 Pla	usible Exposure Pathways
7	P	ASSESS	MENT METHODOLOGY
	7.1	Da	te Quality Objectives
	7	7.1.1	State the Problem
	7	7.1.2	Identify the Goal
	7	7.1.3	Identify the Information Inputs
	7	7.1.4	Define Study Boundaries
	7	7.1.5	Develop a Decision Rule
	7	7.1.6	Specify Acceptance Criteria
	7	7.1.7	Optimise the Design for Obtaining Data
	7.2	Sar	npling and Analysis Quality Plan
	7	7.2.1	Sampling Rationale, Locations and Sample Numbers
	7	7.2.2	Sampling
	7.3	Fiel	d Work
	7.4	Gro	ound Conditions Encountered
	7.5	Lak	poratory Testing1
	7.6	QU	ality Control
	7.7	' And	alysis Results
8	P	ASSESS	MENT AND CONCLUSIONS REGARDING SITE CONTAMINATION
	8 1	Sur	nmary 14

	8.2	Conclusions	14
9	W,	ASTE CLASSIFICATION	15
10)	LIMITATIONS	16

Figures

Figure 1 Investigation Location Plan

Appendices

Appendix A Results of Field Investigations

Appendix B Laboratory Test Result Sheets

Appendix C Letter from David Tully CEnvP SC

1 INTRODUCTION

As requested, Regional Geotechnical Solutions Pty Ltd (RGS) has undertaken a Stage 2 Site Contamination Assessment for the proposed development at Gordon Street, Port Macquarie.

The project involves the development of a new aquatic facility located at Macquarie Park, Port Macquarie complete with an indoor aquatic hall including water play area, health fitness and wellness building, building entrance and amenities, change rooms and kiosk and an outdoor aquatic area including an eight lane 50m pool with spectator seating. The project is anticipated to be staged in its delivery to assist with grant funding opportunities. Firm design proposals in relation to the layout of the facility are not yet available.

The site is approximately 2.8ha and comprises grass playing fields and an open grassed area bound by Gordon Street to the north, commercial buildings adjacent to Grant Street to the east, netball court facility to the south, Wrights Creek to the south west and mixed commercial buildings to the west. Munster Street provides access to the west of the site.

The purpose of the contamination assessment was to provide discussion and recommendations regarding:

- The potential for the site to have been impacted by contamination due to past activities, that may affect future use of the land for redevelopment development;
- Evaluation of the analysis results against industry accepted criteria (NEPM 2013) for recreational landuse;
- Provide a plan indicating the location and concentration of contamination across the site including the lateral extent (if found); and
- Provide recommendations on site management, the need and options for remediation and any further detailed investigation and testing that is recommended / required.

The work was commissioned by David Huntley on behalf of Co.Op Studio and was undertaken in accordance with proposal number RGS21005.6-AE dated 28 March 2024.

2 PREVIOUS INVESTIGATION

A Stage 1 SCA has been undertaken by RGS, the findings of which are presented in report RGS21005.6-AC, dated 23 May 2023. This Stage 2 SCA report should be read in conjunction with the Stage 1 SCA report. The RGS Stage 1 SCA report identified the following Areas of Environmental Concern (AEC) and made the following recommendation with respect to each AEC:

- <u>AEC1</u> Soils within the footprint of future works where excavations are proposed within areas impacted by historical filling works. A sampling grid with test pits through the fill profile is recommended in accordance with the NSW EPA Sampling Design Guidelines (2022) to delineate the potential extent of contaminants which may include asbestos containing materials (ACM), heavy metals and polycyclic aromatic hydrocarbons (PAHs) associated with imported fill of unknown origins. Groundwater assessment may also be required if excavation(s) are proposed;
- <u>AEC2</u> Existing spectator mound adjacent to the eastern site boundary where excavations
 are proposed within areas impacted by historical filling works. A sampling grid is
 recommended in accordance with the NSW EPA Sampling Design Guidelines (2022) to

delineate the potential extent of contaminants which may include ACM, heavy metals and PAHs associated with imported fill of unknown origins; and

• <u>AEC3</u> – Soils within the vicinity of the existing amenities block following demolition works as there is the potential for asbestos type building materials or lead based paint to have been used in its construction.

The AEC locations are shown on Figure 1 of the Stage 1 SCA report.

3 GUIDELINES AND ASSESSMENT CRITERIA

The assessment was aimed at fulfilling the requirements of a Stage 2 Contaminated Site Assessment in accordance with NSW EPA Guidelines for Consultants Reporting on Contaminated Sites (2020).

To evaluate results and for guidance on assessment requirements, the assessment adopted the guidelines provided in the National Environment Protection (Assessment of Site Contamination) Measure (NEPM 2013). The NEPM document provides a range of guidelines for assessment of contaminants for various land use scenarios. The proposed land use is considered equivalent to Public Open Space and as such comparison with the NEPM guideline values for HIL C land use was considered appropriate. However, it is noted that some areas of the site will be used for car parking and the proposed swimming pool complex which may have limited opportunities for soil access, and a Commercial type land use may then be more appropriate. This should be reviewed once more details of the proposed development are available.

In accordance with the NEPM guideline the following criteria were adopted for this assessment:

- Health Investigation Levels (HILs) for Recreational C (Public Open Space) land use were
 used as a conservative approach to assess the potential human health impact of heavy
 metals and polycyclic aromatic hydrocarbons (PAH);
- Health Screening Levels (HSLs) for coarse textured (sand) or fine textured (silt and clay) soils
 on a Commercial D site with respect to inhalation of indoor air were adopted as
 appropriate for the soils encountered to assess the potential human health impact of
 petroleum hydrocarbons and benzene, toluene, ethyl-benzene, xylenes (BTEX) compounds;
- Ecological Investigation Levels (EILs) for Recreational C (Public Open Space) land use were
 used as a conservative approach for evaluation of the potential ecological / environmental
 impact of heavy metals and naphthalene; and
- Ecological Screening Levels (ESLs) for coarse textured (sand) soils or fine textured (silt and clay) soils on a Recreational C (Public Open Space) land use site were as a conservative approach, to assess the potential ecological / environmental impact of petroleum hydrocarbons, BTEX compounds and benzo(a)pyrene.

In accordance with NEPM 2013, exceedance of the criteria does not necessarily deem that remediation or cleanup is required, but is a trigger for further assessment of the extent of contamination and associated risks. The adopted criteria are presented in the results summary table in Appendix B.

4 METHODOLOGY

In accordance with the relevant sections of the National Environment Protection (Assessment of Site Contamination) Measure 1999 (Amended 2013), the assessment involved the following process:

- Undertake targeted sampling and analysis at the selected AECs for the presence and extent of heavy metal contamination and uncontrolled fill;
- Analyse samples for a suite of potential contaminants associated with the past activities;
 and
- Evaluate the results against industry accepted criteria for the proposed land use and NSW EPA Waste Classification Guidelines (2014).

5 SITE SETTING AND HISTORY

5.1 Site Description

The approximately 2.5ha area of assessment is within Macquarie Park which comprises grassed playing fields with surface elevations ranging from approximately RL 3m in the south west to RL 5m in the north east.

The site is situated at the toe of a south facing ridge slope and grades down to the south towards Wrights Creek. It appears to have been a low lying landscape that has been historically modified by site filling works.

A satellite image that shows the location of the site and the site setting is reproduced in Plate 1.

Plate 1: Satellite image dated 2012 obtained from the NSW Government 'Six Maps' website that illustrates the site location and setting at Macquarie Park. The approximate area of assessment is outlined in red. The northern half of the site is proposed for pools and structures and the southern half for car parking.

5.2 Site History Summary

Details of the site history are presented in Report RGS21005.6-AC which should be read in conjunction with this report. Based on available data the chronological development of the subject site is summarised below:

- Allotments 5 to 9 and 13 to 20 of Section 16 were in the possession of various individuals prior to the area being resumed for a proposed school in 1951;
- An alluvial depression is visible in the 1959 and 1965 near the northern and southern site boundaries;
- The majority of the site was filled between 1959 and 1969, including the alluvial depression;
- Additional filling works in the south west corner of the site between 1979 and 1981;
- The source of the fill material is not known;
- Large buildings were present since 1959 beyond the eastern site boundary along Grant Street and the number of buildings increased until about 2009. The buildings may have been part of a motel but this is not confirmed. The buildings were then demolished prior to 2009 and replaced by three large commercial office buildings of two to three storeys;
- Sewer pump station near the western boundary of the site was installed prior to 1979;
- Cricket nets were installed in 1991 and removed in 2017;
- A brick amenities block has been present in the north east corner of the site since at least 1991;
- The car park in the south west corner of the site was constructed between 1997 and 2009;
 and
- Lighting towers were installed in 2010 around the sports field.

5.3 Geology

The site is situated in an area that is underlain by deeply weathered geological units of the Port Macquarie Block which includes slate, chert, basalt, serpentinite and dolerite.

5.4 Site Observations

Observations made during the previous Stage 1 SCA are summarised below:

- Grassed playing fields are present in Lot No's 5 to 9 and 16 to 20 and have lighting towers at regular interval around the perimeter. A brick amenities block with tile roof and a metal shipping container are present in the northeast corner of the site in Lot No. 5. Lot No's 2, 14 and 15 comprise an open grassed area. A set of cricket nets are visible in the 2012 satellite imagery in Lot 15 but have since been removed;
- A fill embankment for spectator viewing approximately 115m in length, 8m width and 1.5m in height is present along the eastern boundary in Lot No's 5 and 20. Orange/red clay soils were exposed on the sides of the mound and the material may have been imported to site;

- The site also includes a portion of an existing car park, located in part of Lot 7063 at the southern end of Munster Street. The car park has a two-coat seal and the pavement condition is variable with some patching and an uneven surface. A north south concrete footpath is also present within Lot 7063; and
- Vegetation consists of short, maintained grass and medium sized trees along the north, east and southern boundaries.

No significant changes from the previous Stage 1 SCA to current date.

A selection of images of the site is presented below.

Looking north east towards brick amenities block and metal shipping container in north east corner of site.

Looking south across playing fields. Site has been modified by filling works to create a near level surface. Lighting poles line the perimeter of the sporting fields.

Looking south across open grassed area in southwest of site on 18 March 2021.

Raised spectator mound on eastern site boundary. Some red clay soils exposed on side of mound.

6 CONCEPTUAL SITE MODEL

6.1 Revised Conceptual Site Model

The initial Conceptual Site Model from the Stage 1 SCA was presented in Table 1. Based on the site observations and knowledge obtained during the Stage 1 SCA, potential AECs where site contamination is potentially situated, and Chemicals of Concern (CoCs) associated with that site contamination were revised as outlined in Table 1.

Table 1: Revised Conceptual Site Model

Area of Environmental Concern	Mode of Potential Contamination	Chemicals of Concern	Targeted Sampling Location		
AEC1: Soils associated with historical filling works	Imported fill of unknown origin	Heavy Metals, TRH, BTEX, PAH, OC/OPP, asbestos	TP1, TP5, TP6, TP7, TP8, TP8, TP9, TP10, BH302, BH303, BH306, BH307, BH308, BH310, BH311, BH312, BH313, BH314, BH315, BH316, BH317, BH318, BH319, BH320, BH321, BH322, BH323, BH324, BH325, BH326		
AEC2: Soils associated with imported fill for spectator mound adjacent to the eastern site boundary	Imported fill of unknown origin	Heavy Metals, TRH, BTEX, PAH, OC/OPP, asbestos	TP3, BH304, BH305, BH309		
AEC3: Soils in vicinity of existing structures	Asbestos building materials, lead based paint	Heavy Metals, asbestos	TP2, TP4, BH301, BH309		

Heavy Metals - Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel and Zinc

BTEX - Benzene, Toluene, Ethylbenzene and Xylene

TRH - Total Recoverable Hydrocarbons

PAH – Polycyclic Aromatic Hydrocarbons

OC/OPP - Organochlorine and Organophosphorus Pesticides

6.2 Potentially Sensitive Receptors

The site is public space and is currently being used as playing fields.

Potentially sensitive receptors are therefore likely to comprise:

- The public using sports fields;
- Potential runoff to adjacent creek;
- Future construction and site workers; and

• Future site users.

6.3 Plausible Exposure Pathways

The presence of measurable concentrations of chemical substances does not automatically imply that the site will cause harm. In order for this to be the case an exposure route must be present allowing a source to adversely affect a receptor.

Based on the site observations and knowledge obtained about site activities as outlined above, potential exposure routes linking chemicals of concern with identified receptors to form plausible exposure routes are summarised in Table 2.

Table 2 - Plausible Exposure Pathways

Area of Environmental Concern	Chemicals of Concern	Exposure Route	Receptors	Comment
AEC1: Soils associated with historical filling	Heavy Metals, TRH, BTEX, PAH, OC/OPP, asbestos	Inhalation, dermal contact, ingestion	Site users, construction workers, services maintenance workers	Imported fill of unknown origin
AEC2: Soils associated with imported fill for spectator mound	Heavy Metals, TRH, BTEX, PAH, OC/OPP, asbestos	Inhalation, dermal contact, ingestion	Site users, construction workers, services maintenance workers	Imported fill of unknown origin
AEC3: Soils in vicinity of existing structures	Asbestos building materials, lead based paint	Inhalation, dermal contact, ingestion	Site users, construction workers, services maintenance workers	Age of building not known.

7 ASSESSMENT METHODOLOGY

7.1 Date Quality Objectives

Data Quality Objectives (DQO) have been prepared for the site to assist the development of the Sampling and Analysis Quality Plan (SAQP). The DQO's have been developed for the site with reference to the seven steps outlined in the DQO process, National Environment Protection Measure (NEPM) Schedule B2, Appendix B, as outlined below.

7.1.1 State the Problem

Previous activities may have resulted in contamination of site soils that exceed adopted guidelines relevant for the proposed future use.

7.1.2 Identify the Goal

The goal of the assessment is to determine if the plausible exposure pathways identified in Section 6 are complete.

7.1.3 Identify the Information Inputs

The information inputs required to attain the goal includes:

- Description of materials present;
- Concentration (s) of potential contaminants; and
- Analytical methods that are required for chemicals of potential concern so that assessment can be made relative to the site criteria.

7.1.4 Define Study Boundaries

For the purposes of the assessment the study is limited to the nominated site area within part of Lot 3 DP831325 as shown in the supplied drawing presented in Figure 1.

7.1.5 Develop a Decision Rule

If the data from the assessment exceeds adopted guideline criteria then further assessment and/or remediation may be required.

7.1.6 Specify Acceptance Criteria

A summary of some of the acceptance criteria is provided in Table 3.

Table 3: Summary of Acceptance Criteria

Parameter	Data Quality Objective				
Laboratory duplicate samples	Relative percent difference (RPD) <40% or as per laboratory requirements				
Chain of Custody forms	100% complete				
Field duplicate samples	Relative percent difference (RPD) <40%				
Sample receipt from laboratory	Sample names/numbers received agree with Chain of Custody Samples received intact Samples received at specific temperature Samples received within laboratory holding times				

7.1.7 Optimise the Design for Obtaining Data

Undertake sampling and analysis of soil samples in accordance with NSW EPA (2022) Sampling Design Guidelines.

7.2 Sampling and Analysis Quality Plan

A sampling and analysis quality plan (SAQP) was developed based on the DQO's outlined above and is summarised below.

7.2.1 Sampling Rationale, Locations and Sample Numbers

Undertake sampling and analysis of soil samples in accordance with NSW EPA (2022) Sampling Design Guidelines which for a site of 2.8 ha requires thirty-five sample points using a grid based approach. In addition, a judgemental approach was used to target the AEC's listed in Table 1.

7.2.2 Sampling

Soil samples are to be collected using disposable gloves and hand tools which are to be decontaminated between sampling points using Decon90 detergent and deionised water. Samples collected will be placed in laboratory supplied 250ml glass jars and placed in an icechilled cooler box.

7.3 Field Work

Field work for the contamination assessment was undertaken on 15-16 August 2024 by an Environmental Engineer from RGS and included:

- Site walkover to assess visible surface conditions and identify evidence of contamination, or past activities that may cause contamination;
- Ten (10) test pits were undertaken with a mini excavator, logged and sampled by an Environmental Engineer; and
- Twenty-seven (27) boreholes were undertaken with a 4WD drill rig, logged and sampled by an Environmental Engineer.

Engineering logs of the test pits and boreholes are presented in Appendix B. The locations of the test locations are shown on Figure 1. They were obtained on site by measurement relative to existing site features.

Soil samples were taken from selected intervals in the excavated test pits following the procedure set out in Section 7.2.2.

7.4 Ground Conditions Encountered

The materials encountered during the investigation are summarised in Tables 4 and 5. Further details are presented on the engineering logs in Appendix A.

Table 4: Summary of Geotechnical Units

Unit	Material	Material Description
UNIT 1	FILL/TOPSOIL	Silty sandy CLAY, high plasticity, dark brown, sand is fine to medium grained, grass roots to 5mm.

Unit	Material	Material Description
UNIT 2	FILL CLAY	Sandy gravelly CLAY to Silty sandy CLAY, medium to high plasticity, red, brown, grey and orange, sand is fine to coarse grained, gravel is fine to medium.
UNIT 3	TOPSOIL	Silty sandy CLAY, high plasticity, brown and dark grey, sand is fine to medium grained.
UNIT 4	ALLUVIAL	Silty CLAY to silty sandy CLAY, medium to high plasticity, pale brown and dark grey, sand is fine to medium.
UNIT 5A	RESIDUAL	Sandy CLAY, medium plasticity, yellow brown and orange brown, sand is fine to medium grained.
UNIT 5B	RESIDUAL	Sandy CLAY, low plasticity, red and brown, sand is fine to medium grained.
UNIT 6	EXTREMELY WEATHERED ROCK	Recovered as Sandy gravelly CLAY, low plasticity, sand is fine to medium grained, gravel is fine to medium subangular to subrounded.

Table 5: Summary of Subsurface Materials

T1 D2	Depth to Base of Material Layer (m)										
Test Pit	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5A	Unit 5B	Unit 6				
BH301	0.2	2.0		≥2.0							
BH302	0.6	0.9				1.9	≥3.0				
BH303	0.2	0.7			1.2	≥1.5					
BH304	0.6		0.75		≥1.9	1.6					
BH305	0.2				0.9	≥1.5					
BH306	0.2				1.3	≥1.5					
BH307	0.2					≥1.5					
BH308	0.2	0.5		≥1.5							
BH309	0.4	0.8			≥1.6						
BH310	0.2	0.6		0.8	1.3	≥1.8					
BH311	0.25	0.75		0.9	2.0		≥3.0				
BH312	0.4	0.9		≥2.0							
BH313	0.4			0.8	≥1.5						
BH314	0.15	0.8		1.3	≥1.6	1					
BH315	0.4	0.6		1.1	≥1.6						

	Depth to Base of Material Layer (m)										
Test Pit	Unit 1	Unit 2	Unit 3	Unit 4	Unit 5A	Unit 5B	Unit 6				
BH316	0.2	1.0			≥2.2						
BH317	0.25	0.8		1.3	≥1.5						
BH318	0.2	0.4		0.6	≥1.5						
BH319	0.3			0.5	1.1	≥1.5					
BH320	0.3			0.6		≥1.5					
BH321	0.2	1.1		1.4	≥1.9						
BH322	0.2	0.9		1.3	≥1.6						
BH323	0.2				0.6	≥1.5					
BH324	0.2				0.6	≥1.7					
BH325	0.2	0.9		1.5	≥2.5						
BH326	0.3	1.8		2.4	≥3.0						
BH327	0.5	2.6		≥3.0							
TP1	0.3	1.0		≥1.5							
TP2	0.15	0.4			≥1.0						
TP3	0.25	0.7	1.1		≥1.5						
TP4	0.3			1.0							
TP5	0.3	0.8		≥1.5							
TP6	0.2	0.5	0.6	≥1.0							
TP7	0.2	1.2		≥1.5							
TP8	0.2	0.7	0.9	≥1.2							
TP9	0.2	0.6	0.7	≥1.2							
TP10	0.3	1.5	1.7	≥2.0							

Note: ≥ Indicates that base of material layer was not encountered

-- Indicates that the material was not encountered at the test location

No visible evidence of liquid hydrocarbon contamination or odours were noted in the excavated soil profiles. No evidence of ACM was observed.

The soils encountered are consistent with the deeply weathered geological units of the Port Macquarie block that can include slate, dolerite and serpentinite.

7.5 Laboratory Testing

Samples were transported under chain-of-custody conditions to a NATA accredited specialist chemical testing laboratory where they were tested for heavy metals.

The results are presented in Appendix B. A summary table of the results comparing them to the adopted guidelines is also presented in Appendix B.

7.6 Quality Control

Samples were obtained using industry accepted protocols for sample treatment, preservation, and equipment decontamination.

Duplicates were submitted to the laboratory for analysis and are summarised below:

- D1=TP1, 0 0.1m
- D2 = BH302, 1.1 1.2m
- D3 = BH306, 0.1 0.2m
- D4 = BH312, 0.8 0.9m
- D5 = BH319, 0.2 0.3m
- D6 = BH327, 1.2 1.3m

Results of the duplicate analysis indicated heavy metal concentrations correlated well between the samples.

The Relative Percent Differences (RPDs) were calculated for the duplicate samples and presented in the results summary table in Appendix B. RPD exceeded 40% in several samples. The elevated RPD is likely to be due to the heterogeneity of contaminant distribution within the material from which the samples were collected and is not considered to affect the usability of the results.

In addition to the field QC procedures, the laboratory conducted internal quality control testing including surrogates, blanks, and laboratory duplicate samples. The results are presented with the laboratory test results in Appendix C.

On the basis of the results of the field and laboratory quality control procedures and testing the data is considered to reasonably represent the concentrations of contaminants in the soils at the sample locations at the time of sampling and the results can be adopted for this assessment.

7.7 Analysis Results

An appraisal of the laboratory test results presented in Appendix B is provided below with reference to the adopted soil investigation and screening levels discussed in Section 3.

ElLs are site specific and are determined by calculating an Ambient Background Concentration (ABC) and an Added Contaminant Limit (ACL) for the site. ABC values were adopted using results from the Stage 1 soil sample BH6 (2.5 – 2.6m) in the north western corner within undisturbed natural soils. ElLs are presented in the Summary Table in Appendix C and summarised in Table 6.

Table 6 - EILs Summary (With Reference to NEPM, Schedule B1)

Analyte	ABC – BH6 (2.5 – 2.7m) (mg/kg)	EIL – Aged Recreational Landuse (mg/kg)
Copper	6	35

Analyte	ABC – BH6 (2.5 – 2.7m) (mg/kg)	EIL – Aged Recreational Landuse (mg/kg)				
Arsenic	<5	100				
Lead	<5	1100				
Nickel	27	30				
Chromium (III)	209	780				
Zinc	<5	140				

- Concentrations of heavy metals exceeded the calculated ElLs for Nickel, Chromium and Copper at multiple locations within AEC1, typically in the fill profiles, although with regard to Copper and Nickel, exceedances were also apparent in natural soils;
- Concentrations of Total Recoverable Hydrocarbon (TRH) were detected in multiple locations with one sample (BH311, 0.8-0.9m) exceeding the adopted ESLs;
- Elevated concentrations of Total Chromium were present in several samples. Speciation
 analysis previously undertaken in the Port Macquarie area has shown that the natural soils
 are enriched in Chromium III. Chromium VI concentrations are typically below detection.
 There is no HIL for Chromium III or total Chromium, only for Chromium VI;
- Concentrations of remaining heavy metals were generally above the laboratory limit of reporting (LOR), but were below adopted health investigation criteria for a recreational site in each of the samples analysed;
- Concentrations of PAHs were above LOR in one sample (BH326, 0.2 -0.3m), but below the adopted health investigation criteria for a recreational site in each of the samples analysed;
- Concentrations of BTEX and PCB contaminants were below LOR in each of the samples analysed;
- Concentrations of pesticide contaminants were below LOR in each of the samples analysed;
 and
- Asbestos was not detected in the soil samples submitted for screening, nor were asbestos type building materials observed on the surface or within the fill profiles.

8 ASSESSMENT AND CONCLUSIONS REGARDING SITE CONTAMINATION

The Stage 1 SCA identified a number of AEC's that warranted further investigation due to the presence of historical filling works. As such, the results of the laboratory analysis of surface and near-surface soil sampling collected from the AEC's during the Stage 2 assessment revealed concentrations of some heavy metals and hydrocarbons which exceeded the adopted investigation criteria for a recreational site in some locations as summarised below.

8.1 Summary

Based on the results outlined in this report the following points and recommendations are made:

- <u>AEC1</u> Soils within the footprint of future works where excavations are proposed within areas
 impacted by historical filling works were investigated. A program of grid sampling revealed
 that:
 - o Elevated concentrations of copper, chromium and nickel were apparent in several samples across the site, locally in excess of ecological guideline criteria for copper and chromium, but commonly in excess (approximately 50% of samples) in both topsoil, fill and natural soil samples. In view of this it is considered likely that the apparent elevated heavy metal concentrations detected are of natural origin either within on-site soils or soils imported from the site vicinity.
 - Elevated concentrations of Total Recoverable Hydrocarbon (TRH) were detected in four samples of fill or fill/topsoil and two samples of natural alluvial soils with concentrations in one sample of alluvial soil (BH311, 0.8-0.9m) in excess of ecological guideline criterion. An absence of impacts in overlying samples (where tested) indicates that these impacts are unlikely to be the result of surface spills of fuels or lubricants. It is possible that they are natural in origin due to the presence of materials such as humic and fulvic acids, tannins and lignans within the soils.
 - The site has undergone historical filling works with fill thicknesses ranging from 0.2 to 2.8m. Most of the filling works occurred prior to 1969. Trace metal fragments and a possible void (s) were encountered within the fill at BH3 (Stage 1) suggesting potential for mixed fill and waste to be present at the site.
 - o Asbestos was not encountered in any of the soil samples analysed for asbestos fibres collected from this AEC.
- <u>AEC2</u> Existing spectator mound adjacent to the eastern site boundary where excavations
 are proposed within areas impacted by historical filling works. A longitudinal sampling grid
 was undertaken with concentrations of analytes found to be below the laboratory LOR,
 indicating generally low levels of anthropogenic impacts in this soil; and
- <u>AEC3</u> Soils within the vicinity of the existing structures were sampled due to the potential for asbestos type building materials or lead based paint to be present in the vicinity. The sampling and analysis did not reveal the presence of soil impacts associated with these materials. Considering the age of the existing amenities block (pre 1991) there is the potential for asbestos type building materials to have been used in its construction. Prior to site demolition works a hazardous material inspection should therefore be undertaken to determine if hazardous materials including asbestos are present.

8.2 Conclusions

The program of soil sampling completed during the DSI did not reveal chemical concentrations within the soils analysed that might pose a potential human health risk with regard to the proposed site use as an aquatic centre.

In view of the exceedances of EIL's and ESL's recorded in some soil samples from the site there may be potential for inhibition of growth of some plant species etc, however, it is considered likely that the chemical concentrations (heavy metals and hydrocarbons) are, for the most part, natural in origin. Firm layout design proposals are not yet available, but it is probable that the proposed development will cover the majority of the site, limiting the potential for fauna and flora uptake of chemical substances on the site. If grass, gardens or vegetation growth is required then some localised excavation and replacement of the growing medium may be appropriate. Consideration

of the nature and extent of such remedial action should be made once firm design proposals are available and it may be appropriate to seek the advice of a landscape specialist.

Should any existing soil require removal off-site, it will require assessment for a Resource Recovery Exemption under Part 9, Clauses 91 and 92 of the Protection of the Environment Operations (Waste) Regulation 2014 in accordance with the Resource Recovery Order under Part 9, Clause 93 of the Protection of the Environment Operations (Waste) Regulation 2014 – the Excavated Natural Material (ENM) Order 2014.

A preliminary waste classification for the site soils has been provided below in Section 10.

Imported fill should comprise materials that classify as Virgin Excavated Natural Material (VENM) or Excavated Natural Material (ENM) in accordance with NSW EPA (2014) Waste Classification Guidelines. Imported VENM or ENM material should be accompanied by appropriate documentation outlining these classifications.

As recommended by the Stage 1 SCA, a hazardous material inspection should be undertaken prior to demolition works commencing to determine if hazardous materials including asbestos are present. Where asbestos containing material is present an Asbestos Management Plan will require preparation by a person with management or control of the workplace and should be prepared with reference to the relevant SafeWork Australia's Code of Practices for asbestos management and removal to an appropriately licensed waste management facility.

Should materials suspected of being contaminated (by way of visual or olfactory evidence) be encountered during development of the site or if there are soils encountered that differ from those sampled and analysed during this investigation, it is recommended that advice from a suitably qualified and experienced environmental consultant be sought without delay.

Based on the results of the Stage 2 site contamination assessment presented herein, the site can be made suitable for the proposed land use as an aquatic centre provided the recommendations and advice of this report are adopted, and demolition and site preparation works are conducted in accordance with appropriate site management protocols and legislative requirements.

Should the proposed land use change in the future, the findings of this sampling program must be reassessed accordingly.

9 WASTE CLASSIFICATION

Table 2 of the 'Waste Classification Guidelines (2014)' nominates a suite of analytes to be tested (Column 1) and also provides the maximum concentration (CT1) allowable within the soil for classification without the need for additional toxicity characteristics leaching procedure (TCLP) testing for both general solid waste (Column 2) and restricted solid waste (Column 3) for each analyte. Should the CT1 values be exceeded, the guidelines provide a Specific Contaminant Concentration (SCC) value to allow further evaluation of contaminant concentrations in conjunction with TCLP testing.

The laboratory results indicate that the site soils which were sampled during this investigation would meet the requirement for General Solid Waste.

Further waste classification testing of soils may be required should excavations extend to areas not previously samples by either the Stage 1 or Stage 2 investigations. Additional testing should be undertaken prior to construction work commencing to prevent delays during the testing and reporting process.

10 LIMITATIONS

This report comprises the results of an investigation carried out for a specific purpose and client as defined in the document. The report should not be used by other parties or for purposes or projects other than those assumed and stated within the report, as it may not contain adequate or appropriate information for applications other than those assumed or advised at the time of its preparation. The contents of the report are for the sole use of the client and no responsibility or liability will be accepted to any third party. The report should not be reproduced either in part or in full, without the express permission of Regional Geotechnical Solutions Pty Ltd.

Contaminated site investigations are based on data collection, judgment, experience, and opinion. By nature, these investigations are less exact than other engineering disciplines. The findings presented in this report and used as the basis for the recommendations presented herein were obtained using normal, industry accepted practises and standards. To our knowledge, they represent a reasonable interpretation of the general condition of the site. Under no circumstances, however, can it be considered that these findings represent the actual state of the site at all points.

Recommendations regarding ground conditions referred to in this report are estimates based on the information available at the time of its writing. Estimates are influenced and limited by the fieldwork method and testing carried out in the site investigation, and other relevant information as has been made available. In cases where information has been provided to Regional Geotechnical Solutions for the purposes of preparing this report it has been assumed that the information is accurate and appropriate for such use. No responsibility is accepted by Regional Geotechnical Solutions for inaccuracies within any data supplied by others.

If site conditions encountered during construction vary significantly from those discussed in this report, Regional Geotechnical Solutions Pty Ltd should be contacted for further advice.

This report alone should not be used by contractors as the basis for preparation of tender documents or project estimates. Contractors using this report as a basis for preparation of tender documents should avail themselves of all relevant background information regarding the site before deciding on selection of construction materials and equipment.

If you have any questions regarding this project, or require any additional consultations, please contact the undersigned.

For and on behalf of Regional Geotechnical Solutions Pty Ltd

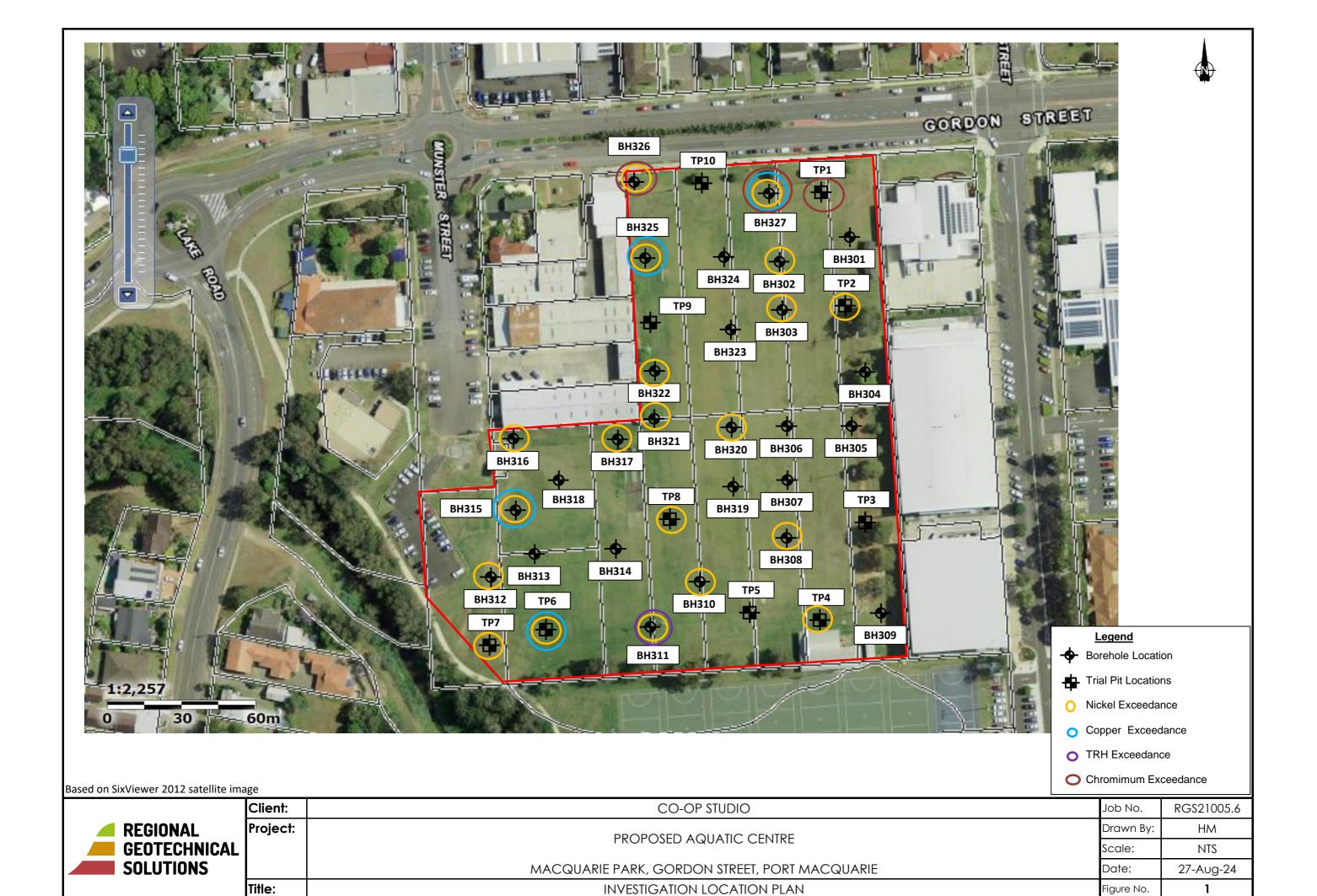
Prepared by

Reviewed by

Grant Colliar

Andrew Hills

Senior Engineering Geologist


Alle

Associate Environmental Engineer

Indre My

Figures

Appendix A Results of Field Investigations

CLIENT:

Co-Op Studio

PROJECT NAME: Aquatic Facility

SITE LOCATION: Gordon Street, Port Macquarie

TEST LOCATION: Refer to Figure **DATE:** 15/8/24

BOREHOLE NO: BH301

1 of 1

НМ

RGS21005.6

PAGE:

JOB NO:

LOGGED BY:

DRILL TYPE: RGS Ute Mounted Drill Rig EASTING: 491842 m SURFACE RL:

BOREHOLE DIAMETER: 50 mm INCLIN						_	EASTING: CLINATION: 90° NORTHING:	491842 6522356		DATU		IXL.	AHD
Drilling and Sampling					Material description and profile information					d Test			
METHOD	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T		0.10m ES		-		SC	TOPSOIL: Silty Sandy CLAY, high plasticit brown, sand, fine to medium grained.	y, dark	× ×	F			TOPSOIL/ FILL
				-		CL	Sandy Gravelly CLAY: Medium plasticity, brown, sand, fine to coarse grained, gravel medium grained, angular to subrounded.			St	HP HP	180 180	FILL
		0.50m ES		0. <u>5</u>		CI	Silty Sandy CLAY: Medium plasticity, whit red, sand, fine to coarse grained.	e mottled		VSt	HP	300	FILL
				-							HP	250 250	
	15/8/2024			1. <u>0</u> -		CI	Silty Sandy CLAY: High plasticity, red, sar medium grained.	nd, fine to	Α « «	St	HP HP	110 180	FILL
	15/8			1.5 <u>-</u>							HP	110	
		2.10m ASS 2.20m	_	2. <u>0</u> -	x x x	СН	Silty Sandy CLAY: High plasticity, dark grafine to medium grained.	ey, sand,		S	HP HP	30 30	ALLUVIUM
		2.2011		2.5	X X X X X X X _ X		2.50m				HP	40	
				3. <u>0</u>			Hole Terminated at 2.50 m						
LEG Wat	GEND:			Notes, Sa	-		_	1	ery Soft		<2		Moisture Condition D Dry
▼	Wat (Dat - Wat	er Level te and time s er Inflow er Outflow anges	1	U ₅₀ CBR E ASS B	Bulk s Enviro Acid S Bulk S	ample fo	er tube sample or CBR testing I sample oil Sample	F F St S VSt V H H	oft irm tiff 'ery Stiff lard riable		50 10 20 >4	5 - 50 0 - 100 00 - 200 00 - 400 400	
	tra D	radational or ansitional stra efinitive or di rata change	ata	PID DCP(x-y) HP	Photo Dynar	nic pene	in detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	V L ME D VD	Lo M D	ery Lo oose lediun ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT:

Co-Op Studio

PROJECT NAME: Aquatic Facility

SITE LOCATION: Gordon Street, Port Macquarie

TEST LOCATION: Refer to Figure **DATE:** 15/8/24

BOREHOLE NO: BH302

1 of 1

НМ

RGS21005.6

PAGE:

JOB NO:

LOGGED BY:

DRILL TYPE: RGS Ute Mounted Drill Rig EASTING: 491821 m SURFACE RL:

		YPE: OLE DIAN		Jte Mou : 50 m		_	EASTING: CLINATION: 90° NORTHING:	491821 6522346		SURF. DATU		RL:	AHD
	Drill	ing and Sar	mpling				Material description and profile information				Field	d Test	
МЕТНОБ	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticil characteristics, colour, minor componer		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Not Encountered	0.30m ES		- - - 0.5_		SC	TOPSOIL: Sandy CLAY, high plasticity, da sand, fine to medium grained.	rk brown,	M < Wp	Fr			TOPSOIL/ FILL
		1.10m ES		- - 1.00 - - - - 1.5_		CL	Silty Sandy CLAY: Pale brown, sand, fine grained. 0.90m Sandy Gravelly CLAY: Medium plasticity, fine to coarse grained, gravel, fine to medii grained, subangular to subrounded.	red, sand,		VSt	HP HP	190 220 240	FILL
LEG Wat		2.10m ASS 2.20m		2.0 <u></u>	X X X X X X X X X X X X X X X X X X X	CL	Silty Sandy CLAY: Bluish pale grey, sand medium grained.	, fine to			HP HP	300 300 280	ALLUVIAL
							Hole Terminated at 3.00 m						
LEG Wat	Wat	er Level		Notes, Sa U ₅₀ CBR	50mm	ı Diamet	<u>s</u> er tube sample or CBR testing	S S	ncy Yery Soft Soft		<2 25	CS (kPa 25 5 - 50) - 100	Moisture Condition D Dry M Moist W Wet
Stra	Wat Wat ta Cha	te and time s er Inflow er Outflow anges radational or ansitional stra	hown)	E ASS B Field Tes	Enviro Acid S Bulk S	onmenta Sulfate S Sample	I sample oil Sample in detector reading (ppm)	St S VSt V H H	stiff fery Stiff lard riable V L	V	10 20	00 - 200 00 - 400 100	W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 15 - 35%
	_ D	ansitional stra efinitive or di rata change		DCP(x-y) HP	Dynar	nic pene	terometer test (test depth interval shown) meter test (UCS kPa)		ME D VD) M D		n Dense ense	-

CLIENT:

Co-Op Studio

PROJECT NAME: Aquatic Facility

SITE LOCATION: Gordon Street, Port Macquarie

TEST LOCATION: Refer to Figure **DATE:** 15/8/24

BOREHOLE NO: BH303

1 of 1

НМ

RGS21005.6

PAGE:

JOB NO:

LOGGED BY:

DRILL TYPE: RGS Ute Mounted Drill Rig EASTING: 491822 m SURFACE RL:

		YPE: OLE DIAN		Ite Moui 50 mi			EASTING: CLINATION: 90° NORTHING:	491822 6522331		SURF. DATU		RL:	AHD
	Drill	ing and Sar	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Encountered			-		SC	FILL: Silty Sandy CLAY, high plasticity, dar sand, fine to medium grained.	k brown,		F			FILL/TOPSOIL
	Not Encou	0.30m ES		- - 0.5		CL	FILL CLAY: Medium plasticity, red.						FILL CLAY
				-		CL	0.70m FILL CLAY: Medium plasticity, orange brow	vn.	-	St	_	-	RESIDUAL
		1.10m		1.0_									
		ASS 1.20m		_		CL	1.20m Sandy Gravelly CLAY: Reddish brown, lov plasticity, sand, fine to coarse grained, grav			St	_	-	ALLUVIAL
LEG Wat				- 1. <u>5</u> -			grained, subangular to subrounded. Hole Terminated at 1.30 m	/					
				2.0_ -									
				- 2. <u>5</u> -									
				3. <u>0</u>									
LEG	END:			- Notes, Sa	mples a	nd Test	s	Consiste	ncy		U	CS (kPa) Moisture Condition
Wat Stra	er Wat (Dat Wat	er Level te and time s er Inflow er Outflow anges	hown)	U₅ CBR E ASS B	50mm Bulk s Enviro Acid S	Diame ample f	er tube sample or CBR testing I sample ioil Sample	VS V S S F F St S VSt V	ery Soft oft irm tiff ery Stiff lard riable		25 50 10 20	•	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
	G tra De	radational or ansitional stra efinitive or di rata change	ata	Field Test PID DCP(x-y) HP	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Density	V L ME D VD	Lo M D	ery Lo oose lediun ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT:

Co-Op Studio

PROJECT NAME: Aquatic Facility

Gordon Street, Port Macquarie

SITE LOCATION: LOGGED BY: НМ **TEST LOCATION:** Refer to Figure DATE: 15/8/24

BOREHOLE NO: BH304

1 of 1

RGS21005.6

PAGE:

JOB NO:

DRILL TYPE: RGS Ute Mounted Drill Rig **EASTING:** 491853 m **SURFACE RL**:

		OLE DIAN		: 50 mi		_	CLINATION: 90° NORTHING:	6522310		DATU		KL.	AHD
	Drill	ing and Sar	mpling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Not Encountered	0.20m ES		- - - 0. <u>5</u>		SC	TOPSOIL: Silty Sandy CLAY, high plasticit brown, sand, fine to medium grained.	y, dark		F			TOPSOIL/ FILL
				-	× – ×	ML	Silty Sandy CLAY: pale brown, sand, fine	to		VS	HP	20	SLOPEWASH/ FILL
		0.80m ES		- 1. <u>0</u>		CL	nedium grained. CLAY: Medium plasticity, reddish orange.			St	HP HP HP HP	30 20 240 260 250	RESIDUAL
LEC Wat				- - 1. <u>5</u> - -		CL	1.60m Sandy CLAY: Medium plasticity, orange by sand, fine to medium grained.	rown,		St	HP HP HP	240 - 220 220 -	RESIDUAL
				2. <u>0</u> -			Hole Terminated at 1.90 m						
				2. <u>5</u>									
				3. <u>0</u>									
LEC	SEND:			Notes, Sa	mples a	nd Test	<u>s</u>	Consiste VS V	ncy 'ery Soft		<u>U(</u> <2	CS (kPa) Moisture Condition D Dry
Wat	Wat (Dat Wat	er Level te and time s er Inflow er Outflow anges	hown)	U₅o CBR E ASS B	Bulk s Enviro	ample f nmenta ulfate S	ter tube sample or CBR testing Il sample Soil Sample	S S F F St S VSt V H H	ery Soft Soft Firm Stiff Very Stiff Hard Friable		25 50 10 20	5 - 50 5 - 100 00 - 200 00 - 400	M Moist W Wet W _p Plastic Limit W _L Liquid Limit
	G tra D	radational or ansitional stra efinitive or di rata change	ata	Field Test PID DCP(x-y) HP	Photoi Dynan	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Density	V L ME D VD	Lo M D	ery Lo oose ledium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

Co-Op Studio

PROJECT NAME: Aquatic Facility

CLIENT:

Gordon Street, Port Macquarie

SITE LOCATION: LOGGED BY: **TEST LOCATION:** Refer to Figure DATE:

BOREHOLE NO: BH305

1 of 1

15/8/24

НМ

RGS21005.6

PAGE:

JOB NO:

d Drill Di CLIDEACE DI

- 1					Ite Mou		-		491848		SURF		RL:	
L	BOI		OLE DIAN		50 mi	m T	IN	CLINATION: 90° NORTHING:	6522290	m [DATU		1	AHD
\vdash		Drill	ing and Sar	npling			7	Material description and profile information				Field	d Test	
	METHOD	WATER	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity characteristics,colour,minor component		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
	AD/T	ntered	0.10m ES		-		SC	TOPSOIL: Silty Sandy CLAY, high plasticity brown, sand, fine to medium grained.	/, dark		F			TOPSOIL/ FILL
		Not Encountered			-		CL	Sandy CLAY: Medium plasticity, orangish be sand, fine to coarse grained.	orown,		F	HP	260	RESIDUAL
		Š			-							HP	220	
					0.5_							HP	240	
					-									
					-									
			4.00		- 1.0		CL	0.90m Sandy CLAY: Medium plasticity, reddish br	own,		St			RESIDUAL
1-06-30			1.00m ES		1.0_			sand, fine to medium grained.				HP	340	
2.00.0 202					_							HP HP	410 420	
03 Prj: RG					-									
3 2022-03-					1.5			1.50m						
RG 2.00.3					_			Hole Terminated at 1.50 m						
DGD Lib:					-									
Situ Tool -					-									
ab and In S					2.0									
Datgel L					-									
0.03.00.00					-									
24 13:03 1					-									
> 12/9/20					2. <u>5</u>									
awingFile>					-									
3PJ < <dr< th=""><td></td><td></td><td></td><td></td><td>-</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></dr<>					-	_								
P1-TP10.0					_									
SERIEST					3. <u>0</u>									
OGS 300					-									
005.6 BH L					-									
T RGS21					-									
RG 2.00.3 LB.G.LB. Log. RG NON-CORED BOREHOLE - TEST PIT RGS2/1005 BH LOGS 300 SERES TP1-17P10.GPJ < CDrawingFile> 12/9/2/204 13:03 10.03:00.09 Dargel Lab and in Situ Tool - DGD Lab: RG 2.00.3 20/22-03-03 Pif RG 2.00.0 20/21-05-09	LEG	END:		 	Notes, Sa	mples a	nd Test	<u> </u> <u>ts</u>	Consiste				CS (kPa	-
DREHOLE	Wate		er Level		U ₅₀			ter tube sample	s s	ery Soft			- 50	D Dry M Moist
ORED BC	_	(Dat	e and time si er Inflow	hown)	CBR E ASS	Enviro	nmenta	or CBR testing al sample	St S	irm itiff 'en/ Stiff		10	- 100 0 - 200	W Wet W _p Plastic Limit
3G NON-C	⊸	Wat	er Outflow	'	ASS B	Bulk S		Soil Sample	н н	ery Stiff lard			0 - 400 00	W _L Liquid Limit
LB Log F	Strat	G	anges radational or		Field Test	_	oniestic	on detector reading (ppm)	Density	riable V L		ery Lo	ose	Density Index <15% Density Index 15 - 35%
00.3 LIB.G		_ D	ensitional stra		DCP(x-y) HP	Dynan	nic pene	etrometer test (test depth interval shown) bmeter test (UCS kPa)		ME D) M		n Dense	-
RG 2.0		st	rata change		וור	ı Tallü l	CHECK C	ATTENDED TO SEE (OCC N. a)		VD U		ense ery De	ense	Density Index 85 - 85% Density Index 85 - 100%

Co-Op Studio

PAGE: 1 of 1

DATE:

PROJECT NAME: Aquatic Facility

TEST LOCATION: Refer to Figure

CLIENT:

JOB NO: RGS21005.6

BOREHOLE NO: BH306

SITE LOCATION: Gordon Street, Port Macquarie

LOGGED BY: HM

15/8/24

DRILL TYPE: RGS Ute Mounted Drill Rig **EASTING**: 491822 m **SURFACE RL**:

ВС	REH	OLE DIAN	METER:	50 mr	n	IN	CLINATION: 90° NORTHING:	6522291	m [DATU	M:		AHD
	Dril	ling and Sar	mpling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Encountered	0.10m ES		_		SC	TOPSOIL: Silty Sandy CLAY, high plasticit brown, sand, fine to medium grained.	y, dark		F			TOPSOIL
	=	0.40m ES		- - 0. <u>5</u> -		CL	Sandy CLAY: Medium plasticity, reddish b sand, fine to coarse grained, traces of grav medium grained, subangular to subrounde	el, fine to	-	St	HP HP HP	260 280 280	RESIDUAL
		1.20m ASS		- 1. <u>0</u> - -		CL	Sandy CLAY: Medium plasticity, orange br sand, fine to coarse grained, traces of grav medium grained, angular to subangular.	el, fine to	-	St	HP HP HP	340 · 320 380	RESIDUAL
		1.30m		1.5		CL	Sandy Gravelly CLAY:Low plasticity, grey brown, sand, fine to coarse grained, gravel medium grained, subangular to subrounde Hole Terminated at 1.50 m	, fine to		St			EXTREMELY WEATHERED
				- 2.0_ - - - 2.5_									
				3.0 - - - -									
<u>Wa</u> <u>▼</u>	Wai (Da - Wai ¶ Wai ata Ch G tr: D	ter Level te and time s ter Inflow ter Outflow anges rradational or ansitional stra efinitive or di trata change	hown)	Notes, Sal U ₅₀ CBR E ASS B Field Test PID CCP(x-y) HP	50mm Bulk s Enviro Acid S Bulk S Bulk S	Diame ample f nmenta sulfate S ample onisationic pend	ter tube sample or CBR testing I sample ioil Sample on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	S S F F St S VSt V H H	ncy ery Soft oft irm tiff ery Stiff ard riable V L MC D VD	Lo M D	25 50 10 20 >4 ery Lo	6 - 50 1 - 100 0 - 200 0 - 400 000 000	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 15 - 35%

Co-Op Studio

PROJECT NAME: Aquatic Facility

TEST LOCATION: Refer to Figure

JOB NO:

PAGE:

1 of 1 RGS21005.6

SITE LOCATION:

CLIENT:

Gordon Street, Port Macquarie

LOGGED BY: HM

DATE: 15/8/24

BOREHOLE NO: BH307

DRILL TYPE: RGS Ute Mounted Drill Rig EASTING: 491827 m SURFACE RL:

	REH	OLE DIAN		Ite Moui : 50 mr		_	EASTING: CLINATION: 90° NORTHING:	49182 <i>7</i> 6522263		DATU		IXL.	AHD
	Drill	ing and Sar	npling				Material description and profile information				Field	d Test	
МЕТНОБ	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics, colour, minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Encountered	0.10m ES		_		SC	TOPSOIL: Silty Sandy CLAY, high plasticit brown, sand, fine to medium grained.	y, dark		F			TOPSOIL
	Not Encou			- - 0.5_		CL	Sandy CLAY: Low plasticity, reddish brown fine to medium grained, subangular to sub-	n, sand, rounded.	-		HP HP HP	450 420 430	RESIDUAL
				1.0 -									
LEG Wat				1.5			1.50m Hole Terminated at 1.50 m						
				2.0									
				- 2. <u>5</u> -									
				3.0									
	END:			Notes, Sa	mples a	nd Test	<u>s</u>	Consister				CS (kPa)	
_	Wat (Dat Wat Wat	er Level e and time s er Inflow er Outflow anges	hown)	U ₅₀ CBR E ASS B	Bulk s Enviro Acid S	ample f nmenta	ter tube sample or CBR testing I sample ioil Sample	S S F F St S VSt V H H	ery Soft oft irm tiff ery Stiff ard riable		50 10 20	25 5 - 50 0 - 100 00 - 200 00 - 400	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
	G tra D	radational or ansitional stra efinitive or di rata change	ata	Field Test PID DCP(x-y) HP	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Density	V L ME D VD	Lo M D	ery Lo oose edium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT:

Co-Op Studio

PROJECT NAME: Aquatic Facility

SITE LOCATION:Gordon Street, Port MacquarieLOGGED BY:HMTEST LOCATION:Refer to FigureDATE:15/8/24

BOREHOLE NO: BH308

1 of 1

RGS21005.6

PAGE:

JOB NO:

DRILL TYPE: RGS Ute Mounted Drill Rig EASTING: 491830 m SURFACE RL:

- 1			YPE: OLE DIAN		Ite Moui 50 mi			EASTING: CLINATION: 90° NORTHING:	491830 6522238		SURF/ DATU		RL:	AHD
		Drilli	ng and Sar	npling				Material description and profile information				Field	d Test	
METHOD	WATER	WAIEK	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity characteristics,colour,minor component		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	, dr	Encountered			-		SC	TOPSOIL: Silty Sandy CLAY, high plasticity brown, sand, fine to medium grained.	y, dark		F			TOPSOIL
	TO A TO IN	Not Encou	0.30m ES		- 0.5		CL	Sandy Gravelly CLAY: Medium plasticity, brown, sand, fine to medium grained, grave medium grained, subangular to subrounder	el, fine to		St	HP HP HP	200 - 200 210	FILL
3-03 Prj: RG 2.00.0 2021-06-30			0.60m ES		1.0 <u></u>		CL	Silty Sandy CLAY: Medium plasticity, pale pale brown, sand, fine to medium grained, gravel, fine to medium grained, subangular subrounded.	traces of		F	HP HP	60	ALLUVIUM
Lib: RG 2:00.3 2022-0					1.5			Hole Terminated at 1.50 m						
.00.09 Datgel Lab and In Situ Tool - DGD					2.0_									
2) < <drawingfile>> 12/9/2024 13:03 10.03</drawingfile>					- 2. <u>5</u> -									
GS21005.6 BH LOGS 300 SERIES TP1-TP10.G					3. <u>0</u>									
G NON-CORED BOREHOLE -	- - (I - ∨ - ∨	Wate (Date Wate Wate	er Level e and time si er Inflow er Outflow inges	hown)	U ₅₀ CBR E ASS B	50mm Bulk s Enviro Acid S	Diame ample f	ter tube sample or CBR testing Il sample Soil Sample	S S F F St S VSt V H F	ncy /ery Soft Soft Firm Stiff /ery Stiff lard Friable		25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400	Moisture Condition D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
RG 2:00.3 LIB.GLB Log		Gr tra De	adational or nsitional stra efinitive or dis ata change	ata	Field Test PID DCP(x-y) HP	Photoi Dynan	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	V L MD D VD	Lo M D	ery Lo oose ledium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

Co-Op Studio

PROJECT NAME: Aquatic Facility

CLIENT:

SITE LOCATION: Gordon Street, Port Macquarie

LOGGED BY: НМ **TEST LOCATION:** Refer to Figure DATE: 15/8/24

BOREHOLE NO: BH309

1 of 1

RGS21005.6

PAGE:

JOB NO:

DRILL TYPE: RGS Ute Mounted Drill Rig **EASTING:** 491859 m SURFACE RL:

		YPE: OLE DIAN		Jte Mou L: 50 m			CLINATION: 90° NORTHING:	491859 6522208		DATU		KL.	AHD
	Drill	ling and Sar	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measure	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity characteristics, colour, minor component	//particle is	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Not Encountered	0.20m ES		-		SC	TOPSOIL: Silty Sandy CLAY, high plasticity brown, sand, fine to medium grained.	/, dark		F			TOPSOIL
	Z	0.60m ES		0. <u>5</u>	X X X X X X X X _	OL	Silty Sandy CLAY: High plasticity, pale bro sand, fine to medium grained.	wn,		S	HP HP	10 10 10	FILL
				1. <u>0</u>		CL	Sandy Gravelly CLAY: Medium plasticity, brown, sand, fine to medium grained, suba subrounded.			St	HP HP	310 290 300	RESIDUAL
				- - 1. <u>5</u>		CL	1.30m Sandy CLAY: Medium plasticity, brown, sa to coarse grained, traces of gravel, fine to r grained, subangular to rounded.			St	HP HP	450 420 410	RESIDUAL
				-			Hole Terminated at 1.60 m						
				2.0									
				2. <u>5</u>									
				3. <u>0</u>									
				-									
Wat	Wat (Dat Wat Wat	ter Level te and time s ter Inflow ter Outflow anges	hown)	U ₅₀ CBR E ASS B	50mm Bulk s Enviro Acid S	Diame ample f	ser tube sample or CBR testing I sample ioil Sample	S S F F St S VSt V H H	ery Soft oft irm tiff ery Stiff ard		25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400	D Dry M Moist W Wet W _p Plastic Limit
	G tra D	radational or ansitional stra efinitive or di rata change	ata	PID DCP(x-y) HP	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	V L MC D VD	Lo M D	ery Lo oose ledium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

Co-Op Studio

PAGE: 1 of 1

PROJECT NAME: Aquatic Facility

CLIENT:

JOB NO:

BOREHOLE NO: BH310

RGS21005.6

SITE LOCATION: Gordon Street, Port Macquarie **TEST LOCATION:** Refer to Figure

LOGGED BY:

DATE:

НМ 15/8/24

DRILL TYPE: RGS Ute Mounted Drill Rig

BOREHOLE DIAMETER: 50 mm INCLINATION: 90° **EASTING**: 491788 m **SURFACE RL**:

	во	REH	OLE DIAN	IETER:	50 mi	m	IN	CLINATION: 90° NORTHING:	6522216	m [DATUI	M:		AHD
I		Drill	ing and Sar	npling				Material description and profile information				Field	d Test	
	METHOD	WATER	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
Ī	AD/T	Encountered			_		SC	TOPSOIL: Silty Sandy CLAY, high plasticit brown, sand, fine to medium grained.	y, dark		F			TOPSOIL/ FILL
		Not Encor	0.30m ES		- - 0. <u>5</u>		CI	Sandy Gravelly CLAY: Medium plasticity, brown, sand, fine to medium grained.	dark	-	F	HP HP HP	100 100	FILL
					-	×	OL	Silty Sandy CLAY: High plasticity, pale bro sand, fine to medium grained.	own,		S	HP HP	30 40	ALLUVIUM
06-30			0.90m ES		1. <u>0</u>		CL	Sandy Gravelly CLAY: Medium plasticity, brown, sand, fine to medium grained, grav medium grained, subangular to subrounde	el, fine to	_	F	HP HP HP	50 250 250	RESIDUAL
эŋ: RG 2.00.0 2021-С					-			1.30m				HP	230	
3D Lib: RG 2.00.3 2022-03-03 F					- 1. <u>5</u> -		CL	Sandy Gravelly CLAY: Low plasticity, red, to medium grained, subrounded to rounded			St			RESIDUAL
Tool - DC								1.80m Hole Terminated at 1.80 m						
0.03.00.09 Datgel Lab and In Situ					2. <u>0</u> -			, iolo formitato at 1.00 m						
DrawingFile>> 12/9/2024 13:03 1					2. <u>5</u>									
300 SERIES TP1-TP10.GPJ <<					3. <u>0</u>									
ST PIT RGS21005.6 BH LOGS					-									
RG 200.31B.GLB Log RG NON-CORED BOREHOLE - TEST PIT RGSZ1006.6 BH LOGS 300 SERES TP1-TP10.GPJ «ChawningFla» - 120/3202 416 310 3300.08 Dagget Lab and in Shu Tod - DGD Lib. RG 2100.3 2022-03-33 Pp, RG 2 200.0 2021-08-30	Wate	Wat (Dat Wat Wat	er Level te and time s er Inflow er Outflow anges	hown)	U ₅₀ CBR E ASS B	50mm Bulk s Enviro	Diame ample f nmenta	s er tube sample or CBR testing I sample oil Sample	S S F F St S VSt V H H	ncy ery Soft oft irm tiff ery Stiff lard riable		25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400	Moisture Condition D Dry M Moist W Wet Wp Plastic Limit W Liquid Limit
RG 2.00.3 LIB.GLB Log		G tra D	radational or ansitional stra efinitive or di rata change	ata -	Field Test PID DCP(x-y) HP	Photo Dynar	nic pen	n detector reading (ppm) strometer test (test depth interval shown) meter test (UCS kPa)	Density	V L MC D VD	Lo M De	ery Lo oose edium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

Co-Op Studio

PROJECT NAME: Aquatic Facility

CLIENT:

SITE LOCATION: Gordon Street, Port Macquarie

TEST LOCATION: Refer to Figure **DATE:** 15/8/24

BOREHOLE NO: BH311

1 of 1

НМ

RGS21005.6

PAGE:

JOB NO:

LOGGED BY:

DRILL TYPE: RGS Ute Mounted Drill Rig EASTING: 491766 m SURFACE RL:

		YPE: OLE DIAN		te Mou : 50 m		_	CLINATION: 90° NORTHING:	491766 6522203		DATU		11.	AHD
	Drill	ling and Sar	mpling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T				-		SC	TOPSOIL: Silty Sandy CLAY, medium plas dark brown, sand, fine to medium grained.	sticity,		F			TOPSOIL
		0.30m ES		-			Sandy Gravelly CLAY: Reddish brown, sa medium grained, gravel, fine to medium gr subangular to subrounded.		-	F	HP HP	80 90 70	FILL
	15/8/2024			0. <u>5</u> -			Sandy CLAY: High plasticity, dark brown, to medium grained.	sand, fine	-	S	HP HP	30	FILL
		0.90m		-			Sandy Gravelly CLAY: High plasticity, pale sand, fine to medium grained.			S	HP HP	40 40 50	ALLUVIUM
		ES		1. <u>0</u>			Sandy Gravelly CLAY: Medium plasticity, brown, sand, fine to medium grained, grave medium grained, subangular to subrounde	el, fine to		F	HP HP HP	250 260 250	
				-							ПР	230	
				1. <u>5</u>									
				2.0			2.00m						
		2.20m					Sandy Gravelly CLAY: Low plasticity, san medium grained, sand, fine to medium gra			St			
		ASS 2.30m		2.5									
				-									
				3.0			3.00m						
				-	_		Hole Terminated at 3.00 m						
				-	-								
Wat	Wat	ter Level te and time s		Notes, Sa U₅₀ CBR E	50mm Bulk s	ı Diame ample f	is ter tube sample or CBR testing il sample	S S	ncy ery Soft oft irm tiff		<2 25 50	CS (kPa 25 5 - 50 0 - 100 00 - 200) Moisture Condition D Dry M Moist W Wet W _o Plastic Limit
	Wat Wat	ter Inflow ter Outflow anges		ASS B	Acid S Bulk S		i sample Soil Sample	VSt V H H Fb Fi	ery Stiff ard riable		20 >4	00 - 400 100	W _L Liquid Limit
	Gi tra De	radational or ansitional str efinitive or di rata change	ata	PID DCP(x-y) HP	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	V L ME D VD	Lo M D	ery Lo pose ledium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

Co-Op Studio

PROJECT NAME: Aquatic Facility

CLIENT:

Gordon Street, Port Macquarie

SITE LOCATION: LOGGED BY: НМ **TEST LOCATION:** Refer to Figure DATE: 15/8/24

BOREHOLE NO: BH312

1 of 1

RGS21005.6

PAGE:

JOB NO:

DRILL TYPE: RGS Ute Mounted Drill Rig **EASTING:** 491709 m SURFACE RL:

во	REH	OLE DIAN	/IETER	: 50 m	m	IN	CLINATION: 90° NORTHING:	6522211	m [DATU	М:		AHD
	Drill	ing and Sar	mpling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T		0.20m ES		-		SC	TOPSOIL: Silty Sandy CLAY, high plasticit brown, sand, fine to medium grained.	y, dark		F			TOPSOIL/ FILL
	l d 15/8/2024			0. <u>5</u>	x x x	ML	Silty Sandy Gravelly CLAY: High plasticity brown.			S	HP HP HP	150 200 150 250	FILL
		0.80m ES		-		CI	Sandy Gravelly CLAY: Medium plasticity, brown, sand, fine to coarse grained, gravel medium grained, angular to subrounded.	, fine to		F	HP HP	250 220	ALLUVIUM
				1. <u>0</u> -		СН	Silty Sandy CLAY: Dark grey, high plastic fine to medium grained, angular to subang	ity, sand, ular.		S	HP HP HP	50 90 50	ALLOVIUM
				- 1. <u>5</u> - -	X	CH	Silty Sandy Gravelly CLAY: High plasticity brown, sand, fine to coarse grained, gravel grained, subangular to subrounded.			S	HP HP HP	30 60 40 50	ALLUVIUM
				2.0			Hole Terminated at 2.00 m						
				2. <u>5</u>									
				3. <u>0</u>									
	END:			Notes, Sa	mples a	nd Tesi	<u>s</u>	Consiste				CS (kPa	-
_ _	Wat (Dat Wat Wat	er Level te and time s er Inflow er Outflow anges		U ₅₀ CBR E ASS B	Bulk s Enviro Acid S Bulk S	ample f nmenta	er tube sample or CBR testing I sample oil Sample	S S F F St S VSt V H H Fb F	ery Soft oft irm diff ery Stiff lard riable		50 10 20 >4	5 - 50 0 - 100 10 - 200 10 - 400 100	W _L Liquid Limit
	G tra De	radational or ansitional str efinitive or di rata change	ata	PID DCP(x-y) HP	Photo Dynar	nic pen	n detector reading (ppm) strometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	V L ME D VD	Lo M D	ery Lo oose ledium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

Co-Op Studio

PROJECT NAME: Aquatic Facility

TEST LOCATION: Refer to Figure

PAGE: JOB NO:

DATE:

1 of 1 RGS21005.6

15/8/24

Density Index 15 - 35%

Density Index 35 - 65%

Density Index 65 - 85%

Density Index 85 - 100%

Loose

Medium Dense

Very Dense

MD

D

VD

CLIENT:

SITE LOCATION: Gordon Street, Port Macquarie

LOGGED BY: НМ

BOREHOLE NO: BH313

DRILL TYPE: RGS Ute Mounted Drill Rig

PID

HP

DCP(x-y)

transitional strata

strata change

Definitive or distict

Photoionisation detector reading (ppm)

Hand Penetrometer test (UCS kPa)

Dynamic penetrometer test (test depth interval shown)

EASTING: 491719 m **SURFACE RL**:

		TYPE: OLE DIAN		Jte Moui : 50 mi		-	EASTING: CLINATION: 90° NORTHING:	491719 6522242		DATU		KL:	AHD
	Dril	ling and San	npling	_			Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T				-		SC	TOPSOIL: Silty Sandy CLAY, high plasticit brown, sand, fine to medium grained.	y, dark		F			TOPSOIL/ FILL
		0.50m ES		0. <u>5</u>	X X X	CH	Silty Sandy CLAY: High plasticity, pale bro sand, fine to medium grained.	own,		S	HP HP HP	20 10 20	ALLUVIUM
	15/8/2024			1.0 <u> </u>		CL	Sandy Gravelly CLAY: Medium plasticity, brown, sand, fine to coarse grained, gravel medium grained, subangular to subrounde	, fine to		St	HP HP	300 260 260	RESIDUAL
				1.5		CL	Sandy CLAY: Medium plasticity, yellow bro sand, fine to medium grained. 1.50m Hole Terminated at 1.50 m	own,		St	HP HP	300 280 300	RESIDUAL
				2.0_ -									
				2. <u>5</u> - - - - - 3.0									
LEC Wat	GEND:			- - - Notes, Sa			_	1	ery Soft		<2		D Dry
<u>=</u>	Wat (Da Wat Wat Mata Ch	ter Level te and time sl ter Inflow ter Outflow anges tradational or	hown)	U ₅₀ CBR E ASS B	Bulk s Enviro Acid S Bulk S	ample f	er tube sample or CBR testing I sample oil Sample	F Fi St St VSt Vo H H	oft rm tiff ery Stiff ard riable V	\ <u>\</u>	50 10 20	5 - 50 0 - 100 00 - 200 00 - 400 400	P

ENGINEERING LOG - BOREHOLE

Co-Op Studio

PROJECT NAME: Aquatic Facility

SITE LOCATION: Gordon Street, Port Macquarie

TEST LOCATION: Refer to Figure

CLIENT:

BOREHOLE NO: BH314

1 of 1

15/8/24

НМ

RGS21005.6

PAGE:

DATE:

JOB NO:

LOGGED BY:

			YPE: OLE DIAN		te Moui 50 mr		_	EASTING: CLINATION: 90° NORTHING:	491755 6522246		SURF		RL:	AHD
Drilling and Sampling						Material description and profile information							d Test	
	METHOD	WATER	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity characteristics,colour,minor component		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
	AD/T	4	0.10m ES		_		SC	TOPSOIL: Silty Sandy CLAY, high plasticity brown, sand, fine to medium grained.	/, dark		F		200	TOPSOIL/ FILL
		15/8/2024			- -		CL	Sandy CLAY: Medium plasticity, reddish bi sand, fine to medium grained, gravel, fine to grained, subangular to subrounded.			St	HP HP HP	220 230 250 70	FILL
			0.70m ES		0. <u>5</u> -		СН	Sandy Gravelly CLAY: High plasticity, darl sand, fine to coarse grained, gravel, fine to grained, angular to rounded.			S	HP HP	80 70	FILL
16-30					1. <u>0</u>		СН	Silty Sandy CLAY: High plasticity, pale gre fine to coarse grained.	y, sand,		S	HP HP HP	30 40 40	ALLUVIUM
j: RG 2.00.0 2021-0					_	x x	CL	Silty Sandy CLAY: High plasticity, yellow b sand, fine to medium grained. 1.30m	rown,		S	HP HP	110	ALLUVIUM
.00.3 2022-03-03 Pr					1. <u>5</u>		CL	Sandy CLAY: Medium plasticity, yellow bro sand, fine to medium grained.	wn,		F	HP HP HP	110 - 180 220	RESIDUAL
b: RG 2					_			Hole Terminated at 1.60 m				HP	200	
RG 2003 LIB.GLB Log RG NON-CORED BOREHOLE - TEST PIT RGS21065 BH LGGS 300 SERES TP1-TP10.GPJ <-DrawingFile>> 12/9/2024 13:04 10.03:00.09 Dage! Log and in Shu Tod - DGD Lib: RG 2.00.3 2022-03-03 Pf; RG 2.00.0 2021-06-30					2.0_ - - - 2.5_ - - 3.0_ -									
Log RG NON-CORED BUREHULE - 1ES	Water ✓ Water Level (Date and time shown) ✓ Water Inflow ✓ Water Outflow Strata Changes			Notes, Samples and Tests U ₅₀ 50mm Diameter tube sample CBR Bulk sample for CBR testing E Environmental sample ASS Acid Sulfate Soil Sample B Bulk Sample			ter tube sample or CBR testing I sample	S S F F St S VSt V H H	Nex			25 - 50 - 100 0 - 200 0 - 400	Moisture Condition D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15%	
RG 2.00.3 LIB.GLB	Gradational or transitional strata Definitive or distict strata change				PID DCP(x-y)	Photoi Dynan	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)		L ME D VD	Lo M D	ose	n Dense	Density Index 15 - 35%

Co-Op Studio

Gordon Street, Port Macquarie

PAGE:

1 of 1

PROJECT NAME: Aquatic Facility

SITE LOCATION:

CLIENT:

JOB NO:

RGS21005.6 НМ

BOREHOLE NO: BH315

TEST LOCATION: Refer to Figure

LOGGED BY: DATE:

15/8/24

DRILL TYPE: RGS Ute Mounted Drill Rig **EASTING:** 491709 m **SURFACE RL**:

		OLE DIAN			m INCLINATION: 90° NORTHING: 6522255 m DATUM: AHD								
	Drilling and Sampling				Material description and profile information				Field Test				
METHOD	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics, colour, minor componer		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	124			-		SC	TOPSOIL: Silty Sandy CLAY, high plasticit brown, sand, fine to medium grained.	y, dark		F			TOPSOIL
	 15/8/2024	0.50m ES		0.5	×	СН	Silty Sandy Gravelly CLAY: High plasticit grey, sand, fine to coarse grained, gravel, medium grained, subangular to subrounde	fine to		S	HP HP	90	FILL
	-			- 1.0	x x x x	СН	Silty Sandy CLAY: High plasticity, pale grafine to coarse grained.	ey, sand,		S	HP HP HP HP	70 40 60 50	ALLUVIUM
				-	× ×	CL	Sandy CLAY: Medium plasticity, yellow bro sand, fine to medium grained.	own,	_	St	HP HP	300 340 320	RESIDUAL
		1.50m ES		1.5_			1.60m Hole Terminated at 1.60 m						
				2. <u>0</u>	-								
				2. <u>5</u>	-								
				3. <u>0</u>									
	SEND:			Notes, Sa	mples a	nd Test	<u>s</u>	Consiste VS V	ncy 'ery Soft		<u>U(</u>	CS (kPa	Moisture Condition D Dry
	Wat (Dat Wat	er Level te and time s er Inflow er Outflow anges	hown)	U ₅₀ 50mm Diameter tube sample CBR Bulk sample for CBR testing E Environmental sample ASS Acid Sulfate Soil Sample B Bulk Sample				S S F F St S VSt V H F	oft irm stiff ery Stiff lard iriable		25 50 10 20 >4	5 - 50 0 - 100 00 - 200 00 - 400	M Moist W Wet W _p Plastic Limit W _L Liquid Limit
	Gradational or transitional strata Definitive or distict strata change			Field Tests PID Photoionisation detector reading (ppm) DCP(x-y) Dynamic penetrometer test (test depth interval shown) HP Hand Penetrometer test (UCS kPa)			Density V Very Loose L Loose MD Medium Dense D Dense VD Very Dense			n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%		

Co-Op Studio

PROJECT NAME: Aquatic Facility

CLIENT:

SITE LOCATION: Gordon Street, Port Macquarie

TEST LOCATION: Refer to Figure **DATE:** 16/8/24

BOREHOLE NO: BH316

1 of 1

НМ

RGS21005.6

PAGE:

JOB NO:

LOGGED BY:

DRILL TYPE: RGS Ute Mounted Drill Rig EASTING: 491716 m SURFACE RL:

		YPE: OLE DIAN		Jte Mou : 50 mi			EASTING: CLINATION: 90° NORTHING:	491716 6522278		DATU		KL.	AHD
	Drill	ing and Sar	mpling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Encountered			-		SC	TOPSOIL: Silty Sandy CLAY, high plasticity brown, sand, fine to medium grained.	y, dark		F			TOPSOIL
	Not Encou	0.30m ES		- - 0. <u>5</u>		СН	Sandy Gravelly CLAY: Medium plasticity, brown, sand, fine to medium grained, grave medium grained, angular to subangular.	pale el, fine to	_	F			FILL
				-	x	СН	Sandy CLAY: Brown, sand, fine to medium traces of gravel, fine to medium grained, su to subrounded. Silty Sandy CLAY: High plasticity, dark green stands of the subrounded stands of the subround s	ıbangular		F	HP HP HP	180 180 200 150	FILL
				1. <u>0</u> -	* *	CL	fine to medium grained. 1.00m Sandy CLAY: Medium plasticity, yellow bro sand, fine to medium grained.	own,	-		HP HP HP	80 80 140 190	RESIDUAL
				1. <u>5</u>							HP	210	
				2.0			2.00m Hole Terminated at 2.00 m						
				2. <u>5</u>									
				3. <u>0</u>									
LEG	END:			Notes, Sa	mples a	nd Test	s	Consister	ncv		UG	CS (kPa) Moisture Condition
Wat	er Wat (Dat Wat Wat	er Level te and time s er Inflow er Outflow anges	hown)	U ₅₀ CBR E ASS B	50mm Bulk s Enviro Acid S	Diame ample f	er tube sample or CBR testing I sample soil Sample	VS V S S F F St S VSt V H H	ery Soft oft irm tiff ery Stiff ard riable		25 50 10 20		D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
<u> </u>	G tra D	radational or ansitional stra efinitive or di rata change	ata	PID DCP(x-y) HP	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Density	V L ME D VD	Lo M D	ery Lo oose ledium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

Co-Op Studio

PROJECT NAME: Aquatic Facility

CLIENT:

Gordon Street, Port Macquarie

SITE LOCATION: LOGGED BY: НМ **TEST LOCATION:** Refer to Figure DATE: 16/8/24

BOREHOLE NO: BH317

1 of 1

RGS21005.6

PAGE:

JOB NO:

DRILL TYPE: RGS Ute Mounted Drill Rig **EASTING:** 491757 m **SURFACE RL**:

		OLE DIAN		: 50 mi		-	CLINATION: 90° NORTHING:	6522272		DATU	M:	KL.	AHD
	Drill	ing and Sar	mpling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T		0.20m		-		SC	TOPSOIL: Silty Sandy CLAY, high plasticit brown, sand, fine to medium grained.	y, dark		F			TOPSOIL/ FILL
		0.50m		- 0.5		CL	Sandy Gravelly CLAY: Medium plasticity, brown, sand, fine to coarse grained, gravel medium grained, angular to subrounded.			F	HP HP HP	110 110 160	FILL
	15/8/2024	ES				CL	Sandy CLAY: High plasticity, reddish brow fine to coarse grained, traces of gravel, fine medium grained, subangular to subrounde	to	_	F	HP HP HP	110 90 100	FILL
	15/8			1. <u>0</u>	x x x x	СН	Silty Sandy CLAY: High plasticity, pale gre fine to coarse grained.	ey, sand,	_	S	HP HP	10	ALLUVIUM
				-	×	CL	1.30m Sandy CLAY: Medium plasticity, yellow bro	own,		F	HP HP	110	RESIDUAL
				1.5			sand, fine to medium grained. 1.50m Hole Terminated at 1.50 m				HP HP	120 110	
				2.0 -									
				2. <u>5</u>									
				3. <u>0</u>									
	GEND:			Notes, Sa	mples a	nd Tes	<u>s</u>	Consister VS V	ncy ery Soft		<u>U(</u>	CS (kPa	Moisture Condition D Dry
_ ⊢	Wat (Dat Wat	er Level te and time s er Inflow er Outflow	hown)	U ₅₀ CBR E ASS B	Bulk s Enviro Acid S	ample f onmenta	ter tube sample or CBR testing I sample ioil Sample	S S F F St S VSt V H H	ery Son oft irm tiff ery Stiff ard riable		25 50 10 20	5 - 50 0 - 100 00 - 200 00 - 400	M Moist W Wet W _p Plastic Limit W _L Liquid Limit
<u> </u>	G tra D	anges radational or ansitional stra efinitive or di rata change	ata	Field Test PID DCP(x-y) HP	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	V L ME D VD	Lo M D	ery Lo pose ledium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT:

Co-Op Studio

PROJECT NAME: Aquatic Facility

SITE LOCATION: Gordon Street, Port Macquarie

TEST LOCATION: Refer to Figure DATE:

BOREHOLE NO: BH318

1 of 1

16/8/24

НМ

RGS21005.6

PAGE:

JOB NO:

LOGGED BY:

DRILL TYPE: RGS Ute Mounted Drill Rig EASTING: 491735 m SURFACE RL:

		YPE: OLE DIAN		te Mou: 50 mi			CLINATION: 90° NORTHING:	491 <i>7</i> 35 6522252		DATU		KL.	AHD
	Drill	ing and Sar	mpling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Encountered			-		SC	TOPSOIL: Silty Sandy CLAY, high plasticity brown, sand, fine to medium grained.	y, dark		F			TOPSOIL
	Not Encou	0.30m ES		-		СН	Sandy Gravelly CLAY: Medium plasticity, brown, sand, fine to coarse grained, gravel medium grained, angular to subrounded.			F	HP HP HP	100 110 100	FILL
	z			0. <u>5</u>	× -	СН	Silty Sandy CLAY: High plasticity, pale gre fine to coarse grained.	ey, sand,		S	HP HP HP	20 20 20	ALLUVIUM
				-		CL	Sandy CLAY: Medium plasticity, yellow bro sand, fine to medium grained.	own,		F	HP HP HP	200 170 160	RESIDUAL
				1. <u>0</u>		CL	1.10m CLAY: Low plasticity, yellow brown.			St	- HP	300 -	RESIDUAL
				-		OL	CLAT. LOW plasticity, yellow blown.			31	HP HP	260 290	1120100112
				1.5			1.50m Hole Terminated at 1.50 m						
				- - 2.0_									
				2. <u>5</u>									
				3. <u>0</u>									
LEC	END:			Notes S-	mplee	nd Tos		Consists	001		112	26 /hD-) Moieture Condition
Wat	er Wat (Dat Wat Wat	er Level te and time s ter Inflow ter Outflow anges	hown)	U ₅₀ CBR E ASS B	50mm Bulk s Enviro Acid S	Diame ample f	ter tube sample or CBR testing Il sample soil Sample	S So F Fi St St VSt Vo H H	ery Soft oft rm		25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400	Moisture Condition D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
	G tra D	radational or ansitional stre efinitive or di rata change	ata	PID DCP(x-y) HP	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Density	V L ME D VD	Lo D	ery Lo oose ledium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

ENGINEERING LOG - BOREHOLE

Co-Op Studio

PROJECT NAME: Aquatic Facility

PAGE: JOB NO: 1 of 1

НМ

CLIENT:

SITE LOCATION:

LOGGED BY:

RGS21005.6

TEST LOCATION: Refer to Figure

VD

Very Dense

Density Index 85 - 100%

DATE: 16/8/24

BOREHOLE NO: BH319

I	DRILL TYPE:	RGS Ut	e Mounted Dril	l Rig	EASTING:	491801 m	SURFACE RL:	
ı	PODEHOLE DIA	METED.	FO	INCLINIATION, OOS	NODTHING.	CE000CC	DATURA.	ALID

Gordon Street, Port Macquarie

		YPE: OLE DIAN		Jte Mou : 50 mi			CLINATION: 90° NORTHING:	49180 652226		DATU		KL.	AHD
	Drilli	ing and Sar	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics, colour, minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
ב כ	Not Encountered	0.20m ES		-	x x	SC	TOPSOIL: Silty Sandy CLAY, high plasticit brown, sand, fine to medium grained.	y, dark	M < W _P	Fr			TOPSOIL
	Not E			0.5	x _ x _ x	СН	Silty Sandy CLAY: Medium plasticity, grey brown, gravel, fine to medium grained. 0.50m	<i>i</i> sh		St	HP HP	150 120	ALLUVIUM
		0.70m		- 0. <u>5</u>		CL	Sandy CLAY: Medium plasticity, yellow bro sand, fine to medium grained.	own,		VSt	HP HP HP	110250240	RESIDUAL
		ASS 0.80m		1. <u>0</u>							HP	250	
				-		CL	Sandy CLAY: Low plasticity, reddish brow fine to medium grained.	n, sand,			HP HP HP	350 320 310	RESIDUAL
				1.5			1.50m Hole Terminated at 1.50 m						
				-									
				2.0									
				-									
				2. <u>5</u>									
				3.0									
				-									
9	END:			Notes, Sa	mnles a	nd Teet	e.	Consist	encv		110	CS (kPa	a) Moisture Condition
z Z	Wate (Date Wate Wate	er Level e and time s er Inflow er Outflow	hown)	U ₅₀ CBR E ASS B	50mm Bulk s Enviro	Diame ample f nmenta	ter tube sample or CBR testing I sample ioil Sample	VS S F St VSt H	Very Soft Soft Firm Stiff Very Stiff Hard		25 50 10 20		D Dry M Moist W Wet W _p Plastic Limit
rat	tra De	anges radational or ansitional stra efinitive or dis rata change	ata	PID DCP(x-y) HP	Photoi Dynan	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Fb Density	Friable V L MD D VD	Lo M D	ery Lo oose ledium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT:

Co-Op Studio

PROJECT NAME: Aquatic Facility

SITE LOCATION: Gordon Street, Port Macquarie LOGGED BY:

BOREHOLE NO: BH320

1 of 1

НМ

RGS21005.6

PAGE:

JOB NO:

TEST LOCATION: Refer to Figure **DATE:** 16/8/24

DRILL TYPE: RGS Ute Mounted Drill Rig EASTING: 491797 m SURFACE RL:

		YPE: OLE DIAN		Jte Mou : 50 mi				EASTING: NORTHING:	491797 6522294		SURF/ DATU		RL:	AHD
		ing and Sar					Material description and profile					Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil characteristics,colour,min	type, plasticity	r/particle s	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Not Encountered			-		SC	TOPSOIL: Silty Sandy CLAY brown, sand, fine to medium		, dark		F			TOPSOIL
	Not E	0.40m ES		- 0. <u>5</u>	X X X X X X X X _	ОН	Silty Sandy CLAY: Medium sand, fine to medium grained		brown,		F	HP HP HP	160 - 140 140	ALLUVIUM
				- - 1. <u>0</u> -		CL	Sandy CLAY: Medium plastic sand, fine to medium grained		own,		St	HP HP	300 300	RESIDUAL
				- 1.5 - -			1.50m Hole Terminated at 1.50 m							
				2. <u>0</u> - -										
				2. <u>5</u> - -										
				3.0										
LEG Wat	END:			Notes, Sa			_			ery Sof	<u> </u>	<2		D Dry
_ _	(Dat Wat Wat	er Level e and time s er Inflow er Outflow	hown)	U ₅₀ CBR E ASS B	Bulk s Enviro	ample f nmenta sulfate S	er tube sample or CBR testing I sample oil Sample		F Fi St St VSt Ve H Ha	oft rm tiff ery Stiff ard iable	Ť	50 10 20	5 - 50 0 - 100 00 - 200 00 - 400	M Moist W Wet W _p Plastic Limit W _L Liquid Limit
<u> </u>	rata Changes Gradational or transitional strata Definitive or distict strata change			Field Test PID DCP(x-y) HP	Photoi Dynan	nic pen	n detector reading (ppm) etrometer test (test depth interval show meter test (UCS kPa)	n)	<u>Density</u>	V L MI D VD	Lo D M D	ery Lo pose ledium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT:

Co-Op Studio

PROJECT NAME: Aquatic Facility

JOB NO: RGS21005.6 LOGGED BY:

PAGE:

BOREHOLE NO: BH321

1 of 1

SITE LOCATION: Gordon Street, Port Macquarie НМ **TEST LOCATION:** Refer to Figure DATE: 16/8/24

DRILL TYPE: RGS Ute Mounted Drill Rig **EASTING:** 491767 m **SURFACE RL**:

		OLE DIAN		: 50 mi		_	CLINATION: 90° NORTHING:	6522273		DATU	M:		AHD
	Drill	ing and Sar	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Encountered	0.10m ES		-		SC	TOPSOIL: Silty Sandy CLAY, high plasticit brown, sand, fine to medium grained.	y, dark	A N M	Fr			TOPSOIL/ FILL
	Not Encou			0.5		CL	Sandy CLAY: Medium plasticity, reddish b sand, fine to coarse grained.	rown,		VSt	HP HP	350 340	FILL
				-							HP	360	
				1. <u>0</u>	x	СН	Silty Sandy CLAY: High plasticity, dark grefine to coarse grained.	ey, sand,	_	S	HP HP	30 30	FILL
		1.20m ASS		-	x x	ОН	Silty Sandy CLAY: High plasticity, pale grefine to medium grained.	ey, sand,		F	HP HP HP	80 80 80	ALLUVIUM
		(1.30m		1. <u>5</u>	x	CL	Sandy CLAY: Medium plasticity, yellow bro sand, fine to medium grained.	own,	-	St	HP HP HP	40 200 180	
				2.0			1.90m Hole Terminated at 1.90 m				HP	190	
				<u>-</u> -									
				2. <u>5</u> - -									
				3. <u>0</u> 									
LEG	END:			Notes, Sa	mples a	nd Test	<u>s</u>	Consister VS V	ncy ery Soft		<u>U(</u>	CS (kPa	Moisture Condition D Dry
_	Wat (Dat Wat Wat		hown)	U ₅₀ CBR E ASS B	Bulk s Enviro Acid S	ample f onmenta	ter tube sample or CBR testing I sample ioil Sample	S S F F St S VSt V H H	ery Son oft irm tiff ery Stiff ard riable		25 50 10 20	5 - 50 5 - 50 0 - 100 00 - 200 00 - 400	M Moist W Wet W _p Plastic Limit W _L Liquid Limit
LEC Wat	■ Water Outflow rata Changes Gradational or transitional strata Definitive or distict strata change			PID DCP(x-y) HP	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Density	V L ME D VD	Lo D D	ery Lo oose edium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

Co-Op Studio

PROJECT NAME: Aquatic Facility

CLIENT:

SITE LOCATION: Gordon Street, Port Macquarie

TEST LOCATION: Refer to Figure **DATE:** 16/8/24

BOREHOLE NO: BH322

1 of 1

НМ

RGS21005.6

PAGE:

JOB NO:

LOGGED BY:

DRILL TYPE: RGS Ute Mounted Drill Rig EASTING: 491767 m SURFACE RL:

		YPE: OLE DIAN		Ote Mou R: 50 m		-	EASTING: CLINATION: 90° NORTHING:	491767 6522303		DATU			AHD
	Drill	ing and Sar	npling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (Not measure	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T				-		SC	TOPSOIL: Silty Sandy CLAY, high plasticit brown, sand, fine to medium grained.	y, dark		F			TOPSOIL/ FILL
		0.30m ES		-		CL	Sandy CLAY: Medium plasticity, reddish b sand, fine to coarse grained.	rown,		St	HP HP	300 270	FILL
				0. <u>5</u>		CL	Sandy CLAY: Medium plasticity, orange bi sand, fine to medium grained.	own,	-	St	HP HP HP	260 220 230	FILL
	4			-							НР	260	
	1 16/8/2024			1. <u>0</u>	x	ОН	Silty Sandy CLAY: High plasticity, pale greating fine to medium grained.	ey, sand,		VS	HP HP	10 10	ALLUVIUM
	_ <u>▼</u>			-	X		1.30m				HP HP	150	
				1. <u>5</u>		CL	Sandy CLAY: Medium plasticity, yellow bro sand, fine to medum grained.	own,		F	HP HP	160 180	RESIDUAL
				-	<u></u>		Hole Terminated at 1.60 m						
				2.0_ -									
				- 2. <u>5</u>									
				3.0									
				-									
	SEND:			Notes, Sa	mples a	nd Test	<u>s</u>	Consister				CS (kPa	
	Mater Water Level (Date and time shown Water Inflow ■ Water Outflow			U ₅₀ CBR E ASS B	Bulk s Enviro Acid S	ample fo	er tube sample or CBR testing I sample oil Sample	S S F F St S VSt V H H	ery Soft oft irm stiff ery Stiff lard riable		50 10 20	25 5 - 50 0 - 100 00 - 200 00 - 400	P P
	G tra D	radational or ansitional stra efinitive or di rata change	ata	PID DCP(x-y) HP	Photo Dynar	nic pene	n detector reading (ppm) trometer test (test depth interval shown) meter test (UCS kPa)	Density	V L ME D VD	Lo D	ery Lo oose lediun ense ery D	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT:

Co-Op Studio

PROJECT NAME: Aquatic Facility

SITE LOCATION: Gordon Street, Port Macquarie LOGGED BY: HM

BOREHOLE NO: BH323

1 of 1

RGS21005.6

PAGE:

JOB NO:

TEST LOCATION: Refer to Figure **DATE:** 16/8/24

DRILL TYPE: RGS Ute Mounted Drill Rig EASTING: 491799 m SURFACE RL:

		YPE: OLE DIAN		Ite Moui : 50 mi			CLINATION: 90° NORTHING:	491799 6522334		DATU			AHD
	Drill	ing and Sar	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Encountered	0.20***		-		SC	TOPSOIL: Silty Sandy CLAY, high plasticit brown, sand, fine to medium grained.	y, dark		F			TOPSOIL
	ot Encou	0.20m ES 0.30m ES		-		CL	Sandy CLAY: Medium plasticity, orangish sand, fine to medium grained.	brown,		St	HP HP	200 180	RESIDUAL
	Not	LS		0. <u>5</u>							HP	180	
				-		CL	0.60m Sandy CLAY: Medium plasticity, reddish b sand, fine to medium grained.	rown,	-	St	HP HP	300 300	RESIDUAL
				-							HP	300	
				1.0_									
				-									
				1.5			1.50m						
				_			Hole Terminated at 1.50 m						
				_									
				2.0									
				_									
				-									
				2.5_									
				-									
				3. <u>0</u>									
				-									
				-									
LEG Wat	END:			Notes, Sa	mples a	nd Tes	<u>s</u>	Consister VS V	ncy ery Soft		<u>U(</u>	CS (kPa 25	Moisture Condition D Dry
	Wat (Dat	er Level te and time s	hown)	U₅₀ CBR E	Bulk s	ample f	ter tube sample or CBR testing _I l sample	S S	oft irm tiff		25 50	5 - 50 0 - 100 00 - 200	M Moist W Wet W _p Plastic Limit
	Wat	er Inflow er Outflow anges		ASS B	Acid S		soil Sample	VSt V	ery Stiff ard riable		20	00 - 400 100	W _L Liquid Limit
	G tra	radational or ansitional stra efinitive or di	ata	Field Test PID DCP(x-y)	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval shown)	Density	V L ME	Lo N		ose n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65%
		rata change		HP	Hand	Penetro	meter test (UCS kPa)		D VD		ense ery De	ense	Density Index 65 - 85% Density Index 85 - 100%

CLIENT:

Co-Op Studio

PAGE: 1 of 1 JOB NO: RGS21005.6

BOREHOLE NO: BH324

PROJECT NAME: Aquatic Facility SITE LOCATION: Gordon Street, Port Macquarie

LOGGED BY: НМ **TEST LOCATION:** Refer to Figure DATE: 16/8/24

DRILL TYPE: RGS Ute Mounted Drill Rig **EASTING:** 491799 m **SURFACE RL**:

BO		OLE DIAN		Ite Moui : 50 mi			EASTING: CLINATION: 90° NORTHING:	491799 6522358		DATU		RL:	AHD
	Drill	ling and Sar	mpling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Encountered			_		SC	FILL: Silty Sandy CLAY, high plasticity, dar sand, fine to medium grained.	k brown,	M × W	Fr			FILL/TOPSOIL
	Not Encou			-		CL	FILL: Sandy CLAY, medium plasticity, orar brown, sand, fine to medium grained.	ngish	_	St	HP HP	160 180	FILL
	ž			0. <u>5</u>							HP	160	
		0.70m ES		-		CL	FILL: Sandy Clay, low plasticity, reddish by sand, fine to medium grained, traces of gra			VSt	HP HP	480 400	ALLUVIAL
		E3		-			medium grained, subangular to rounded.				HP	380	
		1.00m		1. <u>0</u>									
		ASS (1.20m		_									
				1.5		CL	1.40m Sandy Gravelly CLAY: Medium plasticity, brown, sand, fine to medium grained, grave	orangish	_		HP HP	250 270	RESIDUAL
				_			medium grained, subangular to subrounde				HP	270	
				_			Hole Terminated at 1.70 m						
				2.0									
				_									
				2.5									
				_									
				_									
				3.0									
				_									
				-									
LEG Wat	END:	<u> </u>	<u> </u>	Notes, Sa			_	1	ery Soft		<2		D Dry
<u> </u>	(Dat	ter Level te and time s ter Inflow ter Outflow	hown)	U ₅₀ CBR E ASS B	Bulk s Enviro Acid S	ample f nmenta	ier tube sample or CBR testing I sample ioil Sample	F F St S VSt V	oft irm tiff ery Stiff ard		50 10 20	5 - 50 0 - 100 00 - 200 00 - 400 400	P
	ta Cha	anges radational or ansitional str		Field Test	ts_		on detector reading (ppm)	l .	riable V L		ery Lo		Density Index <15% Density Index 15 - 35%
	_ D	efinitive or di rata change		DCP(x-y) HP	Dynar	nic pen	etrometer test (test depth interval shown) meter test (UCS kPa)		ME D VD) M D		n Dense ense	·

Co-Op Studio

PROJECT NAME: Aquatic Facility

CLIENT:

Gordon Street, Port Macquarie

SITE LOCATION: LOGGED BY: НМ **TEST LOCATION:** Refer to Figure DATE: 16/8/24

BOREHOLE NO: BH325

1 of 1

RGS21005.6

PAGE:

JOB NO:

DRILL TYPE: RGS Ute Mounted Drill Rig **EASTING:** 491765 m **SURFACE RL**:

ВО	REH	OLE DIAN	IETER	: 50 mi	m	IN	CLINATION: 90° NORTHING:	6522342	m [DATU	М:		AHD
	Drill	ing and Sar	npling				Material description and profile information				Field	d Test	
МЕТНОБ	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Encountered			-		SC	TOPSOIL: Silty Sandy CLAY, high plasticity brown, sand, fine to medium grained.	y, dark		F			TOPSOIL
	t Encou			-		CL	Sandy CLAY: Medium plasticity, reddish be sand, fine to medium grained, traces of gra	vel, fine to		St	HP HP	250 270	FILL
	Not	0.50m		0.5			medium grained, subangular to subrounde	d.			HP	280	
		ES		-									
				-									
				1. <u>0</u>		СН	0.90m Silty Sandy CLAY: High plasticity, dark bro sand, fine to medium grained.	own,		VS	HP HP	40 30	ALLUVIUM
				-							HP	40	
				-									
				1. <u>5</u>		CL	1.50m Sandy CLAY: Medium plasticity, yellow bro	NA 50		S	HP	220	RESIDUAL
				-		CL	sand, fine to medium grained.	owii,		3	HP HP	210 210	The side of the si
				-		CL	Sandy CLAY: Low plasticity, yellow brown, fine to medium grained.	sand,		St	HP	330	RESIDUAL
		2.00m ES		2.0							HP	350 350	
				-									
				-									
LEC Wat				2.5			2.50m Hole Terminated at 2.50 m						
				-									
				_									
				3.0_									
				-									
Wat				Notes, Sa			<u>s</u> ter tube sample	1	ncy ery Soft		<2	CS (kPa 25 5 - 50	Moisture Condition D Dry M Moist
≚	(Dat	er Level te and time s er Inflow	hown)	CBR E ASS	Bulk s Enviro	ample f onmenta	or CBR testing I sample soil Sample	F Fi St St	rm tiff ery Stiff		50 10) - 100)0 - 200)0 - 400	W Wet W _p Plastic Limit
Stra	ta Ch	_		В	Bulk S	Sample	,	H Ha	ard riable		>4	100	
 —	Gradational or transitional strata Definitive or distict strata change			Field Test PID DCP(x-y) HP	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	V L ME D VD	Lo M D	ery Lo oose edium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

Co-Op Studio

PROJECT NAME: Aquatic Facility

PAGE: JOB NO: 1 of 1

SITE LOCATION:

TEST LOCATION: Refer to Figure

CLIENT:

Gordon Street, Port Macquarie

LOGGED BY:

BOREHOLE NO: BH326

RGS21005.6

НМ

16/8/24

DRILL TYPE: RGS Ute Mounted Drill Rig **EASTING:** 491762 m **SURFACE RL**:

DATE:

		YPE: OLE DIAN		Jte Mou : 50 m			EASTING: CLINATION: 90° NORTHING:	49176 652237		OATU		RL:	AHD
	Drill	ing and Sar	npling				Material description and profile information				Field	d Test	
МЕТНОD	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Encountered	0.20m ES		-		SC	TOPSOIL: Silty Sandy CLAY, high plasticity brown, sand, fine to medium grained.	y, dark	M < W _P	F			TOPSOIL
	Not E			0.5		CL	Sandy CLAY: Low plasticity, pale grey, sar medium grained, traces of gravel, fine to m grained, subangular to subrounded.			VSt	HP HP HP	330 330 320	FILL
LEG Wat		0.90m ES		- - 1. <u>0</u>		CL	Sandy Gravelly CLAY: Medium plasticity, brown, sand, fine to medium grained, grave medium grained, subangular to subrounde	el, fine to			HP HP HP	300 300 280	FILL
				1. <u>5</u>		CL	Sandy Gravelly CLAY: Medium plasticity, brown, sand, fine to medium grained, grave medium grained, subangular to subrounde	el, fine to			HP HP	250 280 230	FILL
				2.0	X	CH	Silty Sandy CLAY: High plasticity, dark gre fine to medium grained.	ey, sand,	M > W _P	S	HP HP	10 10 20	ALLUVIUM
		2.50m ASS 2.60m		2. <u>5</u> - - -		CL	2.40m Sandy CLAY: Medium plasticity, yellow bro sand, fine to medium grained.	own,		St	HP HP	110 120 110	
				3.0			3.00m Hole Terminated at 3.00 m Install to 2.7m, slotted 0.7, plain 2.0						
Wat	Wat (Dat Wat Wat		hown)	Notes, Sa U ₅₀ CBR E ASS B	50mm Bulk s Enviro Acid S Bulk S	n Diame sample t	ter tube sample or CBR testing al sample Soil Sample	S F St VSt H	Very Soft Soft Firm Stiff Very Stiff Hard Friable	V	25 50 10 20	5 - 50 0 - 100 00 - 200 00 - 400	Moisture Condition D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15%
	tra De	radational or ansitional stra efinitive or di rata change	ata	PID DCP(x-y) HP	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)		L MD D VD	Lo M D	oose	n Dense	Density Index 15 - 35%

CLIENT:

Co-Op Studio

PROJECT NAME: Aquatic Facility

SITE LOCATION: Gordon Street, Port Macquarie

TEST LOCATION: Refer to Figure **DATE:** 16/8/24

BOREHOLE NO: BH327

1 of 1

НМ

RGS21005.6

PAGE:

JOB NO:

LOGGED BY:

DRILL TYPE: RGS Ute Mounted Drill Rig EASTING: 491817 m SURFACE RL:

		YPE: OLE DIAN		Jte Mou :: 50 m		_	EASTING: CLINATION: 90° NORTHING:	49181 <i>7</i> 6522377		DATU		KL.	AHD
	Dril	ling and Sar	mpling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measure	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics, colour, minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	24			0.5		SC	TOPSOIL: Silty Sandy CLAY, high plasticit brown, sand, fine to medium grained.	y, dark		F			TOPSOIL
	l 16/8/2024	0.60m ES		0. <u>5</u>		CL	Sandy CLAY: Low plasticity, dark grey, sa medium grained, traces of gravel, fine to m grained, subangular to subrounded.			St	HP HP	300	FILL
	_			. 10		GC	Clayey Sandy GRAVEL: Fine to medium subangular to subrounded, sand, fine to m grained.			L	HP	350	FILL
		1.20m ES		1. <u>0</u>		CL	Sandy Gravelly CLAY: Medium plasticity, brown, sand, fine to medium grained.	reddish		F	HP HP HP	200 190 200	FILL
				1. <u>5</u>			2.00m						
				2. <u>5</u>		CL	Silty Sandy CLAY: Medium plasticity, sand medium grained, traces of gravel, fine to m grained, subangular to subrounded.			F	HP HP	100	FILL
					x	OH	Silty Sandy CLAY: High plasticity, dark grundler fine to medium grained.	ey, sand,	-	S	HP HP	50 50	ALLUVIUM
				3.0			Hole Terminated at 3.00 m						
				-	 -								
Wat	Wat (Da Wat	ter Level te and time s ter Inflow ter Outflow anges	shown)	Notes, Sa U ₅₀ CBR E ASS B	50mm Bulk s Enviro Acid S	Diamet ample fo	s er tube sample or CBR testing I sample oil Sample	S S F F St S VSt V H H	ncy ery Soft oft irm tiff ery Stiff ard riable		25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400	Moisture Condition D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
	G tra D	radational or ansitional str efinitive or di rata change	ata	PID DCP(x-y) HP	Photo Dynar	nic pene	n detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Density	V L ME D VD	Lo M D	ery Lo oose ledium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT:

Co-Op Studio

PROJECT NAME: Aquatic Facility JOB NO:

SITE LOCATION: Gordon Street, Port Macquarie

TEST LOCATION: Refer to Figure **DATE:** 16/8/24

TP1

1 of 1

НМ

RGS21005.6

TEST PIT NO:

LOGGED BY:

PAGE:

EQUIPMENT TYPE: RGS Ute Mounted Drill Rig **EASTING**: 491827 m **SURFACE RL**:

		MENT TYP IT LENGT		RGS (unted I DTH :	Drill Rig	EASTING: NORTHING:	491827 6522372		SURF/ DATU		RL:	AHD
	Exca	ation and S	Sampling				Material description and pro	file information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: S characteristics,colour,r			MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
		E 0.10m		-		SC	FILL: Sandy CLAY, low pla of grass roots to 5mm.	asticity, dark grey	, traces	M > W _P	Fr			FILL/ TOPSOIL
		0.50m	-	0. <u>5</u>		CL	FILL: Sandy CLAY, mediu some gravel, fine to mediu							FILL CLAY
		E (0.60m		-		CL	FILL: Gravelly Sandy CLA pink/ pink grey, traces of bi			-				
) 2021-06-30		0.90m E (1.00m	_	1. <u>0</u>		SC	TOPSOIL: Clayey SILT, da roots to 5mm.	ark grey, traces o	f tree	-			-	TOPSOIL
022-03-03 Prj: RG 2.00.0	-	1.30m ASS		- - -		ОН	Silty CLAY: Low to mediur grey.	m plasticity, pale	brown/				-	ALLUVIUM
IGD Lib: RG 2:00.32		(1.50m		1.5			Hole Terminated at 1.50 m							
RG 2003 LBIGGEB LQR RG NON-CORED BOREHOLE - TEST PIT RGSZ1006.6 BH LOGS 300 SERES TPI-TP10 GPJ <-Chawngriles-> 126/8/2024 13:05 10 03:00.08 Dagel Lab and in Stu. Tod - DGD Lib. RG 2.00 3/2022-03:43 Pp. RG 2.00 0.2021-06:30				2. <u>0</u>										
rawngFile>> 12/9/2024 13:05 10:03.				- 2. <u>5</u> -										
1S 300 SERIES I P.1-1 P.10. GP3 301				3.0										
EST PIT RGS21005.6 BH LOX	GEND:			- Notes, Sa	mnlee	nd Toss	e.		Consister	ncv.		114	CS (kPa	Moisture Condition
RG NON-CORED BUNEHOLE - 11 RG NON-CORED BUNEHOLE - 11	ter Wai (Da - Wai	ter Level te and time s ter Inflow ter Outflow anges	hown)	U ₅₀ CBR E ASS B	50mm Bulk s Enviro Acid S	n Diame sample f	ser tube sample or CBR testing I sample loil Sample		S S F F St S VSt V H H	ery Soft oft irm tiff ery Stiff ard riable		25 50 10 20	•	D Dry Moisture Condition D Dry M Moist W Wet Wp Plastic Limit WL Liquid Limit
RG 2.00.3 LIB. GLB Log	G tr: D	radational or ansitional stra efinitive or di rata change	ata	PID DCP(x-y) HP	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval sho meter test (UCS kPa)	own)	Density	V L MC D VD	Lo M D	ery Lo oose lediun ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT:

Co-Op Studio

PROJECT NAME: Aquatic Facility

SITE LOCATION: Gordon Street, Port Macquarie LOGGED BY:

TEST LOCATION: Refer to Figure **DATE:** 16/8/24

TP2

1 of 1

НМ

RGS21005.6

TEST PIT NO:

PAGE:

JOB NO:

EQUIPMENT TYPE: RGS Ute Mounted Drill Rig EASTING: 491847 m SURFACE RL:

		MENT TYP		RGS I		unted I DTH :	Drill Rig	EASTING: NORTHING:	491847 6522327		SURF.		RL:	AHD
	Excav	ation and S	ampling	l			Material description and	profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION characteristics,colo	N: Soil type, plasticit ur,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
	ered	E				SC	FILL: Sandy CLAY, low grey, traces of grass ro		wn/ dark	۸ م	Fr			FILL/ TOPSOIL
	Not Encountered	8:28m E 0.30m		-		CL	FILL: Sandy CLAY, me traces of gravel, fine gr	dium plasticity, red/	orange,	Σ				FILL CLAY
	_			0.5_		CL	Sandy CLAY: Medium pale brown mottling.	plasticity, orange/ b	rown with	-				RESIDUAL
				-										
				1.0			1.00m							
				-	_		Hole Terminated at 1.0	0 m						
				1. <u>5</u>	-									
				2.0 <u></u>	- - - -									
				2. <u>5</u>	-									
				-										
				3. <u>0</u>	-									
150	SEND:			Notes S	amples a	nd Tost			Consists	201		111	CS (kPa	a) Moisture Condition
Wat	er Wat (Dat - Wat Wat	ter Level te and time s ter Inflow ter Outflow anges	hown)	Notes, Sa U ₅₀ CBR E ASS B	50mm Bulk s Enviro Acid S	Diame ample f	ter tube sample or CBR testing Il sample Soil Sample		S So F Fi St St VSt Vo H H	ery Soft oft irm tiff ery Stiff ard riable		25 50 10 20	25 (RP2 25 5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit
	G tra D	radational or ansitional stra efinitive or di rata change	ata	Field Tes PID DCP(x-y) HP	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval meter test (UCS kPa)	shown)	Density	V L ME D VD	Lo D D	ery Lo oose lediun ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

Co-Op Studio

PAGE: 1 of 1

PROJECT NAME: Aquatic Facility

TEST LOCATION: Refer to Figure

CLIENT:

JOB NO: RGS21005.6 LOGGED BY: НМ

TP3

SITE LOCATION: Gordon Street, Port Macquarie

> DATE: 16/8/24

TEST PIT NO:

EQUIPMENT TYPE: SURFACE RL: RGS Ute Mounted Drill Rig EASTING: 491863 m

			IENT TYP T LENGTI		RGS (unted I DTH :	Drill Rig	EASTING: NORTHING:	491863 6522248		SURF. DATU		RL:	AHD
H			ation and S					Material description and p					1	d Test	
METHOD		WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION characteristics,colou	: Soil type, plasticity	//particle s	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
			0.10m 0.40m 0.50m		- - - 0. <u>5</u> -		CL	FILL: Sandy CLAY, low brown, traces of grass ro 9.25m Sandy CLAY: Medium prorange, traces of gravel, 10.70m TOPSOIL: Clayey SILT.	oots to 5mm.	ey/	M < W	Fr			FILL/ TOPSOIL FILL CLAY TOPSOIL
					1.0 <u></u>		СН	Sandy CLAY: Medium porange. 1.50m Hole Terminated at 1.50		n/					RESIDUAL
					2.0_										
					3.0										
<u> </u>	Vate ✓	Wate (Date Wate Wate a Cha Gr tra	er Level e and time si er Inflow er Outflow anges radational or ansitional stra afinitive or dia	hown)	Notes, Sa U ₅₀ CBR E ASS B Field Tesi PID DCP(x-y) HP	50mm Bulk s Enviro Acid S Bulk S Bulk S Photo Dynar	Diame ample formenta sulfate S ample conisation	ter tube sample or CBR testing al sample soil Sample on detector reading (ppm) etrometer test (test depth interval simeter test (UCS kPa)	shown)	S So F Fi St St VSt Vo H H	ery Soft oft rm tiff ery Stiff ard iable V L ME D	V Lc) M	25 50 10 20 >4 /ery Lo	6 - 50 0 - 100 10 - 200 10 - 400 100 nose	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 15 - 35%

CLIENT: Co-Op Studio

PROJECT NAME: Aquatic Facility

SITE LOCATION:Gordon Street, Port MacquarieLOGGED BY:HMTEST LOCATION:Refer to FigureDATE:16/8/24

TP4

1 of 1

RGS21005.6

TEST PIT NO:

PAGE:

JOB NO:

EQUIPMENT TYPE: RGS Ute Mounted Drill Rig EASTING: 491826 m SURFACE RL:

		IENT TYP T LENGTI		RGS		unted I DTH :	Drill Rig	EASTING: NORTHING:	491826 6522205		SURF.		RL:	AHD
	Excav	ation and S	ampling	J			Material description and p	orofile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION characteristics, colou	l: Soil type, plasticit ır,minor componen	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
	Not Encountered	E 0.10m		-		CH	FILL: Sandy CLAY, low of grass roots to 5mm. 0.30m Sandy CLAY: Medium			W ~	Fr			FILL/ TOPSOIL ALLUVIUM
	Z			0.5										
				1.0			1.00m							
				1. <u>5</u>			Hole Terminated at 1.00) m						
				2.0 <u></u>	-									
				3. <u>0</u>										
Wat	Wat (Dat Wat Wat	er Level e and time si er Inflow er Outflow	hown)	Notes, Sa U ₅₀ CBR E ASS B	50mm Bulk s Enviro Acid S	Diame ample f	ter tube sample or CBR testing al sample Soil Sample		S S F Fi St S VSt V H H	ncy ery Soft oft irm tiff ery Stiff ard		25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400	Moisture Condition D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
	G tra De	anges radational or ansitional stra efinitive or dis rata change	ata	PID DCP(x-y) HP	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval meter test (UCS kPa)	shown)	Density	V L ME D VD	Lo D D	ery Lo oose ledium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

Co-Op Studio

CLIENT: PROJECT NAME: Aquatic Facility

SITE LOCATION: Gordon Street, Port Macquarie

TEST LOCATION: Refer to Figure DATE: 16/8/24

TP5

1 of 1

НМ

RGS21005.6

TEST PIT NO:

LOGGED BY:

PAGE:

JOB NO:

EQUIPMENT TYPE: RGS Ute Mounted Drill Rig **EASTING:** 491795 m **SURFACE RL**:

		IENT TYP		KGS (IDTH:	Drill Rig EASTING : NORTHING :	491 <i>7</i> 95 6522205		DATU		KL.	AHD
	Excav	ation and S	Sampling				Material description and profile information				Field	d Test	
МЕТНОВ	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity characteristics,colour,minor component		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
	Not Encountered			-		SC	FILL: Sandy CLAY, low plasticity, dark brow traces of grass rootrs to 5mm.	/n,	ν × ×	Fr			FILL/ TOPSOIL
	Not Er			0. <u>5</u>		CL	FILL: Sandy CLAY, medium plasticity, brow traces of gravel, fine rto medium grained, subangular.	n,	_			_	FILL CLAY
rj; ke z.w.u az i-ad-ou				1. <u>0</u>		CI	0.75m Gravelly Sandy CLAY: Medium plasticity, y pale brown, gravel, fine to medium grained.	rellow/				_	ALLUVIUM
J LID: Re Z.UU.3 zvzz-vo-vo				1.5			1.50m Hole Terminated at 1.50 m						
Str. — St				2. <u>0</u>									
				- 2. <u>5</u> -									
				3. <u>0</u>									
LEC	GEND:			Notes, Sa	mples a	nd Tes	<u>ts</u>	Consister				CS (kPa)	
Wat Wat Stra	Wat (Dat	er Level te and time s er Inflow er Outflow anges	hown)	U ₅₀ CBR E ASS B	Bulk s Enviro Acid S	ample f	ter tube sample for CBR testing al sample Soil Sample	S S F F St S VSt V H H	ery Soft oft irm tiff ery Stiff ard riable		50 10 20	25 5 - 50 0 - 100 00 - 200 00 - 400	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
	G tra D	radational or ansitional stra efinitive or di rata change	ata	PID DCP(x-y) HP	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)	Density	V L ME D VD	Lo M D	ery Lo oose edium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

Co-Op Studio

PROJECT NAME: Aquatic Facility

SITE LOCATION: Gordon Street, Port Macquarie

TEST LOCATION: Refer to Figure

CLIENT:

DATE:
SURFACE RL:

TEST PIT NO:

LOGGED BY:

PAGE:

JOB NO:

TP6

1 of 1

НМ

16/8/24

RGS21005.6

		IENT TYP T LENGT		RGS (unted IDTH:	Drill Rig EASTING: NORTHING:	49173 652220		SURF		RL:	AHD
	Excav	ation and S	ampling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
		E 0.20m		-		CL	FILL: Sandy CLAY, low plasticity, dark grey of grass roots to 5mm.	/, traces	× ×				FILL/ TOPSOIL
		0.40m		-		СН	FILL: Sandy CLAY, medium plasticity, red.						FILL CLAY
		E 0.50m		0.5_		MH	0.50m TOPSOIL: Clayey SILT, dark grey.						TOPSOIL
	-	0.00		-	70	CI	Gravelly Sandy CLAY: Pale grey/ pale bro gravel, fine to medium grained, subangular						ALLUVIUM
		0.90m ASS		1.0			1.00m Hole Terminated at 1.00 m						
				1.5 - - - 2.0 - - - 2.5 - - - - - - - - - - - - - - - - - - -									
Wat	Wat (Dai - Wat • Wat • Wat • G • tra	er Level se and time s er Inflow er Outflow anges radational or ansitional stra efinitive or di rata change	hown)	U ₅₀ CBR E ASS B Field Test PID DCP(x-y)	50mm Bulk s Enviro Acid S Bulk S Bulk S Photo Dynar	Diame ample formenta Sulfate S Sample dionisation	ter tube sample or CBR testing all sample soil Sample on detector reading (ppm) etrometer test (test depth interval shown) imeter test (UCS kPa)	Consis VS S F St VSt H Fb Density	Very Soft Soft Firm Stiff Very Stiff Hard Friable	V Lo D	25 50 10 20 >2 ery Lo	5 - 50 0 - 100 00 - 200 00 - 400 400 pose	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 15 - 35%

Co-Op Studio

PROJECT NAME: Aquatic Facility

TEST LOCATION: Refer to Figure

JOB NO:

PAGE:

DATE:

TEST PIT NO:

1 of 1 RGS21005.6

TP7

16/8/24

CLIENT:

SITE LOCATION: Gordon Street, Port Macquarie

LOGGED BY: НМ

EQUIPMENT TYPE: RGS Ute Mounted Drill Rig **EASTING:** 491707 m **SURFACE RL**:

		IENT TYP		RGS (untea IDTH:	Drill Rig EASTING: NORTHING:	491 <i>7</i> 0 <i>7</i> 6522192		DATU		KL:	AHD
	Exca	ation and S	ampling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
	Not Encountered			-			FILL: Sandy CLAY, low plasticity, dark green of grass roots to 5mm.						FILL/ TOPSOIL
021-06-30	Not E			- 0. <u>5</u> 1. <u>0</u>		CL	FILL: Sandy CLAY, medium plasticity, orar brown/ red, traces of gravel, fine to coarse subrounded.						
022-03-03 Prj: RG 2.00.0 20				- - -	× × × × × × × × × × × × × × ×	CH	1.20m Clayey SILT: Dark grey.		-				ALLUVIUM
: RG 2:00:3 z				1.5	ĸ,×		Hole Terminated at 1.50 m						
RG 200.31B.GLB Log RG NON-CORED BOTREHCE. TESTPIT RGSZ1006.6 BH LGGS 300 SERIES TP1-TP10.GPJ <-ChrawingFiles> 12/8/2024 15:05 10.03:00.08 Daget Lab and in Stu Tod - DGD Lib: RG 2.00.32022-03:43 Pjr RG 2.00.0 2021-06:30				2.0_ -									
GPJ < <drawnghie>> 12/9/2024 13:05 10</drawnghie>				- 2. <u>5</u> - -									
RGSZ1005,6 BH LOGS 300 SERIES IF 1-1 F 10				3.0 <u></u>									
LEC	GEND:			Notes, Sa	mples a	nd Test	<u>s</u>	Consister				CS (kPa)	
Wa Wa Str.	Wat (Da	ter Level te and time s ter Inflow ter Outflow anges	hown)	U ₅₀ CBR E ASS B	Bulk s Enviro Acid S Bulk S	ample f	ter tube sample or CBR testing Il sample soil Sample	S S F F St S VSt V H H Fb F	ery Soft oft irm stiff ery Stiff lard		50 10 20 >4	5 - 50 0 - 100 00 - 200 00 - 400 100	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
RG 2.00.3 LIB.GLB LOG	G tra D	radational or ansitional stra efinitive or di rata change	ata	Field Test PID DCP(x-y) HP	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Density	V L ME D VD	Lo D D	ery Lo oose lediun ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

Co-Op Studio

TEST PIT NO: PAGE: 1 of 1

PROJECT NAME: Aquatic Facility

TEST LOCATION: Refer to Figure

CLIENT:

JOB NO: RGS21005.6 LOGGED BY: НМ

TP8

SITE LOCATION: Gordon Street, Port Macquarie

DATE: 16/8/24

EQUIPMENT TYPE: RGS Ute Mounted Drill Rig **EASTING:** 491777 m **SURFACE RL**:

		IENT TYP T LENGT		RGS (unted I DTH :	Drill Rig EAS NOR		491777 6522241		SURF. DATU		RL:	AHD
	Excav	ation and S	ampling				Material description and profile info	mation				Fiel	d Test	
МЕТНОБ	WATER	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type characteristics,colour,minor co			MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
				_		SC	FILL: Sandy CLAY, low plasticity, traces of grass roots to 5mm.	 dark brov	wn,					FILL/TOPSOIL
		0.30m E 0.40m		- 0. <u>5</u>		CL	FILL: Sandy CLAY, medium plast brown, traces of gravel, fine to me subangular.							FILL CLAY
		0.70m		-		МН	0.70m TOPSOIL: Clayey SILT, dark grey	<u> </u>						TOPSOIL/ ALLUVIUM
	-	ASS (0:90M ASS		1. <u>0</u>	× × × × × × × × × × × ×	CL	Clayey SILT: Pale grey.							ALLUVIUM
		1.20m		_	×××		1.20m Hole Terminated at 1.20 m							
LEG Wat	SEND:			1.5	mples a	nd Tesi	s		Consister	нсу		U	CS (kPa) Moisture Condition
	Wat (Dat Wat Wat	_	hown)	U ₅₀ CBR E ASS B	Bulk s Enviro Acid S Bulk S	ample f nmenta	er tube sample or CBR testing I sample oil Sample		VS VOS S SO	ery Soft oft rm tiff ery Stiff ard iable		25 50 10 20 >4	25 5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
_	tra De	radational or ansitional stra efinitive or di rata change	ata	Field Test PID DCP(x-y) HP	Photo Dynar	nic pen	n detector reading (ppm) strometer test (test depth interval shown) meter test (UCS kPa)		<u>Density</u>	V L ME D VD	Lo M D	ery Lo oose lediun ense ery D	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT:

Co-Op Studio

PROJECT NAME: Aquatic Facility

SITE LOCATION: Gordon Street, Port Macquarie

TEST LOCATION: Refer to Figure **DATE:** 16/8/24

TP9

1 of 1

НМ

RGS21005.6

TEST PIT NO:

LOGGED BY:

PAGE:

JOB NO:

EQUIPMENT TYPE: RGS Ute Mounted Drill Rig **EASTING**: 491769 m **SURFACE RL**:

			IENT TYP		RGS (unted I DTH :	Drill Rig EASTING: NORTHING		191769 522327		SURF. DATU		RL:	AHD
ſ		Exca	ation and S	ampling				Material description and profile information					Field	d Test	
	METHOD	WATER	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastic characteristics,colour,minor compone		article	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
F		ered			_		CL	FILL: Sandy CLAY, low plasticity, dark br traces of grass roots to 5mm.	own,						FILL/ TOPSOIL
		Not Encountered	0.20m E 0.30m		- - 0. <u>5</u>		CH	6.15m FILL: Sandy CLAY, medium plasticity, or	ange/	red.				_	FILL CLAY
			0.70		-		ML	TOPSOIL: Sandy SILT, dark grey.						-	TOPSOIL
			0.70m		-		СН	Gravelly Sandy CLAY: Medium plasticity	, yello	ow/					ALLUVIUM
021-06-30			E (0.80m		1.0			pale brown.							
2.00.0 20								1.20m Hole Terminated at 1.20 m							
RG 20031B.GLB Log RG NON-CORED BOREHOLE - TEST PIT RGS210056 BHLOGS 300 SERES TP1-1P10.GPJ << PrawingFile> 129/2/224 13.05 10.03.00.09 DageLab and in Situ Tod - DGD Lib: RG 2.00.3.2022-03-03 Pit RG 2.00.0.2021-05-30					1. <u>5</u> 2.0 2.5										
TEST PIT RGS21005.6 BH LOGS 300 SERIES TP1-1	LEG	END:			3.0 - - - - Notes, Sa	mples a	nd Tesi	<u>ts</u>	<u> </u>	Consisten	ic <u>v</u>		<u>U</u>	CS (kPa	Moisture Condition
SLB Log RG NON-CORED BOREHOLE -	_ 	Wat (Da Wat Wat ta Ch	er Level te and time s ter Inflow ter Outflow anges radational or	hown)	U ₅₀ CBR E ASS B	Bulk s Enviro Acid S Bulk S	ample f nmenta fulfate S ample	ter tube sample for CBR testing al sample Soil Sample on detector reading (ppm)	V	S So F Fin St St /St Ve H Ha	rm	V	50 10 20	5 - 50 0 - 100 00 - 200 00 - 400	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 15 - 35%
RG 2.00.3 LIB.G		_ D	ansitional stra efinitive or di rata change		DCP(x-y) HP	Dynan	nic pen	etrometer test (test depth interval shown) ometer test (UCS kPa)			ME D VD) M D		n Dense ense	Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

Co-Op Studio

PROJECT NAME: Aquatic Facility

CLIENT:

SITE LOCATION: Gordon Street, Port Macquarie

TEST LOCATION: Refer to Figure **DATE:**

TP10

1 of 1

НМ

16/8/24

RGS21005.6

TEST PIT NO:

LOGGED BY:

PAGE:

JOB NO:

EQUIPMENT TYPE: RGS Ute Mounted Drill Rig **EASTING**: 491795 m **SURFACE RL**:

		IENT TYP T LENGTI		RGS (unted I DTH :	Drill Rig	EASTING: NORTHING:	491795 6522371		SURF.		RL:	AHD
-	Excav	ation and S	ampling				Material description and pr	ofile information				Field	d Test	
МЕТНОБ	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: characteristics,colour	Soil type, plasticity minor component	//particle s	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
				-		CL	FILL: Sandy CLAY, low p traces of grass roots to 5	lasticity, dark brov mm.	vn,	× × ×	Fr			FILL/ TOPSOIL
		0.30m E 0.40m		0.5		CH	0.30m FILL: Silty CLAY, white/ p gravel, fine to medium gra FILL: Sandy CLAY, medi	ained, subangular.	. /				-	FILL CLAY
				- 1.0 <u>-</u>			Traces of boulders to 300 grey/ pale brown.	to medium graine	ed.					
	> —	1.50m ASS 1.80m		1. <u>5</u> -		ML	TOPSOIL: Clayey SILT, o	dark grey.		_				TOPSOIL
		ASS 2.00m		2.0	×	СН	Silty CLAY: Medium plas							ALLUVIUM
	END:			2.5 - - - 3.0 - -	mples a	nd Tes	Hole Terminated at 2.00 r		Consiste				CS (kPa	-
Water Y	Wat (Dat Wat Wat ta Cha	er Level e and time si er Inflow er Outflow anges radational or ansitional stra	hown)	U ₅₀ CBR E ASS B Field Test	Bulk s Enviro Acid s Bulk s ss Photo	ample formenta Sulfate S Sample	ter tube sample or CBR testing all sample soil Sample on detector reading (ppm)		S S F F St S VSt V H H	ery Soft fort firm stiff ery Stiff lard riable V L	V Lo	50 10 20 >2 ery Lo	5 - 50 0 - 100 00 - 200 00 - 400 400 pose	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 15 - 35%
	_ D	efinitive or dis rata change		DCP(x-y) HP			etrometer test (test depth interval sl meter test (UCS kPa)	nown)		ME D VD	D	lediun ense ery De	n Dense ense	Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

Appendix B Laboratory Test Result Sheets

Certificate of Analysis

Environment Testing

Regional Geotechnical Solutions 44 Bent Street Wingham

Attention: Grant Colliar Report 1132108-AID

Project Name AQUATIC FACILITY
Project ID RGS21005.6

Received Date Aug 26, 2024

Received Date Aug 26, 2024

Date Reported Sep 12, 2024

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025—Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Methodology:

Asbestos Fibre Identification

NSW 2429

Conducted in accordance with the Australian Standard AS 4964 – 2004: Method for the Qualitative Identification of Asbestos in Bulk Samples and in-house Method LTM-ASB-8020 by polarised light microscopy (PLM) and dispersion staining (DS) techniques.

NOTE: Positive Trace Analysis results indicate the sample contains detectable respirable fibres.

Unknown Mineral Fibres

Mineral fibres of unknown type, as determined by PLM with DS, may require another analytical technique, such as Electron Microscopy, to confirm unequivocal identity.

NOTE: While Actinolite, Anthophyllite and Tremolite asbestos may be detected by PLM with DS, due to variability in the optical properties of these materials, AS4964 requires that these are reported as UMF unless confirmed by an independent technique.

Subsampling Soil Samples

The whole sample submitted is first dried and then passed through a 10mm sieve followed by a 2mm sieve. All fibrous matter greater than 10mm, greater than 2mm as well as the material passing through the 2mm sieve are retained and analysed for the presence of asbestos. If the sub 2mm fraction is greater than approximately 30 to 60g then a subsampling routine based on ISO 3082:2009(E) is employed.

NOTE: Depending on the nature and size of the soil sample, the sub-2 mm residue material may need to be sub-sampled for trace analysis, in accordance with AS 4964-2004.

Bonded asbestoscontaining material

(ACM)

The material is first examined and any fibres isolated for identification by PLM and DS. Where required, interfering matrices may be removed by disintegration using a range of heat, chemical or physical treatments, possibly in combination. The resultant material is then further examined in accordance with AS 4964 - 2004.

NOTE: Even after disintegration it may be difficult to detect the presence of asbestos in some asbestos-containing bulk materials using PLM and DS. This is due to the low grade or small length or diameter of the asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials. Vinyl/asbestos floor tiles, some asbestos-containing sealants and mastics, asbestos-containing epoxy resins and some ore samples are examples of these types of material, which are difficult to analyse.

Limit of Reporting

The performance limitation of the AS 4964 (2004) method for non-homogeneous samples is around 0.1 g/kg (equivalent to 0.01% (w/w)). Where no asbestos is found by PLM and DS, including Trace Analysis, this is considered to be at the nominal reporting limit of 0.01% (w/w).

The NEPM screening level of 0.001% (w/w) is intended as an on-site determination, not a laboratory Limit of Reporting (LOR), per se. Examination of a large sample size (e.g. 500 mL) may improve the likelihood of detecting asbestos, particularly AF, to aid assessment against the NEPM criteria. Gravimetric determinations to this level of accuracy are outside of AS 4964 and hence NATA Accreditation does not cover the performance of this service (non-NATA results shown with an asterisk).

NOTE: NATA News March 2014, p.7, states in relation to AS 4964: "This is a qualitative method with a nominal reporting limit of 0.01 %" and that currently in Australia "there is no validated method available for the quantification of asbestos". This report is consistent with the analytical procedures and reporting recommendations in the NEPM and the WA DoH.

Project Name AQUATIC FACILITY

Project ID RGS21005.6

Date Sampled Aug 15, 2024 to Aug 16, 2024

Report 1132108-AID

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
BH301 0.1-0.2 bg	24-Au0066312	Aug 15, 2024	Approximate Sample 394g Sample consisted of: Brown fine-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH301 0.5-0.6 bg	24-Au0066314	Aug 15, 2024	Approximate Sample 516g Sample consisted of: Off-white fine-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH302 0.3-0.4 bg	24-Au0066317	Aug 15, 2024	Approximate Sample 392g Sample consisted of: Brown fine-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH302 1.1-1.2 bg	24-Au0066319	Aug 15, 2024	Approximate Sample 354g Sample consisted of: Red brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH303 0.3-0.4 bg	24-Au0066322	Aug 15, 2024	Approximate Sample 433g Sample consisted of: Red brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH304 0.2-0.3 bg	24-Au0066325	Aug 15, 2024	Approximate Sample 509g Sample consisted of: Brown fine-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH304 0.8-0.9 bg	24-Au0066327	Aug 15, 2024	Approximate Sample 818g Sample consisted of: Red brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH305 00.2 bg	24-Au0066329	Aug 15, 2024	Approximate Sample 254g Sample consisted of: Brown fine-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
BH305 1-1.1 bg	24-Au0066331	Aug 15, 2024	Approximate Sample 407g Sample consisted of: Red brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH306 0.4-0.5 bg	24-Au0066335	Aug 15, 2024	Approximate Sample 546g Sample consisted of: Red brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH307 0.1-0.2 bg	24-Au0066337	Aug 15, 2024	Approximate Sample 800g Sample consisted of: Brown fine-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH307 0.4-0.5 bg	24-Au0066338	Aug 15, 2024	Approximate Sample 524g Sample consisted of: Red brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH308 0.3-0.4 bg	24-Au0066340	Aug 15, 2024	Approximate Sample 309g Sample consisted of: Brown fine-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH308 0.6-0.7 bg	24-Au0066342	Aug 15, 2024	Approximate Sample 361g Sample consisted of: Off-white coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH309 0.2-0.3 bg	24-Au0066344	Aug 15, 2024	Approximate Sample 418g Sample consisted of: Brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH309 0.6-0.7 bg	24-Au0066346	Aug 15, 2024	Approximate Sample 838g Sample consisted of: Brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH310 0.3-0.4 bg	24-Au0066349	Aug 15, 2024	Approximate Sample 354g Sample consisted of: Brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH310 0.9-1.0 bg	24-Au0066351	Aug 15, 2024	Approximate Sample 429g Sample consisted of: Brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH311 0.3-0.4 bg	24-Au0066353	Aug 15, 2024	Approximate Sample 583g Sample consisted of: Brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH311 0.8-0.9 bg	24-Au0066355	Aug 15, 2024	Approximate Sample 758g Sample consisted of: Brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH311 1.2-13 bg	24-Au0066356	Aug 15, 2024	Approximate Sample 598g Sample consisted of: Brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
BH312 0.2-0.3 bg	24-Au0066359	Aug 15, 2024	Approximate Sample 650g Sample consisted of: Brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH312 0.8-0.9 bg	24-Au0066361	Aug 15, 2024	Approximate Sample 556g Sample consisted of: Brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH312 1.4-1.5 bg	24-Au0066362	Aug 15, 2024	Approximate Sample 413g Sample consisted of: Brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH313 0.5-0.6 bg	24-Au0066364	Aug 15, 2024	Approximate Sample 979g Sample consisted of: Brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
3H313 1.4-1.5 bg	24-Au0066365	Aug 15, 2024	Approximate Sample 418g Sample consisted of: Brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH314 0.1-0.2 bg	24-Au0066367	Aug 15, 2024	Approximate Sample 514g Sample consisted of: Brown fine-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH314 0.7-0.8 bg	24-Au0066369	Aug 15, 2024	Approximate Sample 506g Sample consisted of: Brown fine-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
3H315 0.5-0.6 bg	24-Au0066372	Aug 15, 2024	Approximate Sample 343g Sample consisted of: Brown fine-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
3H316 0.3-0.4 bg	24-Au0066376	Aug 16, 2024	Approximate Sample 405g Sample consisted of: Beige coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
3H316 1.3-1.4 Bg	24-Au0066377	Aug 16, 2024	Approximate Sample 529g Sample consisted of: Brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH317 0.2-0.3 bg	24-Au0066379	Aug 16, 2024	Approximate Sample 366g Sample consisted of: Dark brown fine-grained sandy soil, organic debris and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH317 0.6-0.7 bg	24-Au0066381	Aug 16, 2024	Approximate Sample 673g Sample consisted of: Brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH318 0.3-0.4 bg	24-Au0066384	Aug 16, 2024	Approximate Sample 255g Sample consisted of: Brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
BH319 0.2-0.3 bg	24-Au0066387	Aug 16, 2024	Approximate Sample 437g Sample consisted of: Brown fine-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH320 0.4-0.5 bg	24-Au0066391	Aug 16, 2024	Approximate Sample 403g Sample consisted of: Brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH320 1-1.1 bg	24-Au0066392	Aug 16, 2024	Approximate Sample 498g Sample consisted of: Red brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH321 0.1-0.2 bg	24-Au0066394	Aug 16, 2024	Approximate Sample 335g Sample consisted of: Brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH321 0.5-0.6 bg	24-Au0066395	Aug 16, 2024	Approximate Sample 406g Sample consisted of: Red brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH322 0.3-0.4 bg	24-Au0066399	Aug 16, 2024	Approximate Sample 411g Sample consisted of: Red brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH322 1.5-1.6 bg	24-Au0066400	Aug 16, 2024	Approximate Sample 572g Sample consisted of: Brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
3H323 0.2-0.25 bg	24-Au0066402	Aug 16, 2024	Approximate Sample 265g Sample consisted of: Brown fine-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH323 0.3-0.4 bg	24-Au0066404	Aug 16, 2024	Approximate Sample 473g Sample consisted of: Red brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH324 0.7-0.8 bg	24-Au0066406	Aug 16, 2024	Approximate Sample 459g Sample consisted of: Red brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH325 0.5-0.6 bg	24-Au0066408	Aug 16, 2024	Approximate Sample 517g Sample consisted of: Red brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH325 2-2.1 bg	24-Au0066410	Aug 16, 2024	Approximate Sample 622g Sample consisted of: Brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH326 0.2-0.3 bg	24-Au0066412	Aug 16, 2024	Approximate Sample 321g Sample consisted of: Brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.

Client Sample ID	Eurofins Sample No.	Date Sampled	Sample Description	Result
BH326 0.9-1 bg	24-Au0066414	Aug 16, 2024	Approximate Sample 536g Sample consisted of: Red brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH327 0.6-0.7 bg	24-Au0066417	Aug 16, 2024	Approximate Sample 609g Sample consisted of: Off-white brown fine-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH327 1.2-1.3 bg	24-Au0066419	Aug 16, 2024	Approximate Sample 284g Sample consisted of: Red brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
BH327 2.8-2.9 bg	24-Au0066420	Aug 16, 2024	Approximate Sample 504g Sample consisted of: Brown coarse-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.001% w/w.* Organic fibre detected. No trace asbestos detected.
TP1 1.5 bg	24-Au0066424	Aug 16, 2024	Approximate Sample 81g Sample consisted of: Grey fine-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
TP6 0.9-1 bg	24-Au0066432	Aug 16, 2024	Approximate Sample 226g Sample consisted of: Brown fine-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
TP8 0.7-0.9 bg	24-Au0066435	Aug 16, 2024	Approximate Sample 155g Sample consisted of: Brown fine-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
TP8 0.9-1.2 bg	24-Au0066436	Aug 16, 2024	Approximate Sample 81g Sample consisted of: Brown fine-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
TP10 1.5-1.8 bg	24-Au0066440	Aug 16, 2024	Approximate Sample 65g Sample consisted of: Brown fine-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.
TP10 1.8-2 bg	24-Au0066441	Aug 16, 2024	Approximate Sample 64g Sample consisted of: Brown fine-grained clayey sandy soil and rocks	No asbestos detected at the reporting limit of 0.01% w/w. Organic fibre detected. No trace asbestos detected.

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Asbestos - LTM-ASB-8020	Sydney	Sep 12, 2024	Indefinite
Asbestos - LTM-ASB-8020	Sydney	Sep 12, 2024	Indefinite

ABN: 50 005 085 521

Melbourne Geelong Canberra Sydney 6 Monterey Road 19/8 Lewalan Street 179 Magowar Road Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Dandenong South Grovedale Girraween Mitchell VIC 3175 VIC 3216 NSW 2145 ACT 2911 +61 2 9900 8400 +61 3 8564 5000 +61 3 8564 5000 +61 2 6113 8091 NATA# 1261 NATA# 1261 NATA# 1261 NATA# 1261 Site# 1254 Site# 25403 Site# 18217 Site# 25466

Brisbane Murarrie Mayfield West QLD 4172 NSW 2304 T: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 20794 & 2780 Site# 25079

Perth Newcastle 46-48 Banksia Road Welshpool WA 6106 +61 2 4968 8448 +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 47 009 120 549 NZBN: 9429046024954

Perth ProMicro 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2561 Site# 2554

Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

Auckland (Focus) Christchurch Unit C1/4 Pacific Rise. 43 Detroit Drive Mount Wellington, Rolleston, Auckland 1061 +64 9 525 0568 IANZ# 1308 IANZ# 1290

Tauranga 1277 Cameron Road. Gate Pa, Christchurch 7675 Tauranga 3112 +64 3 343 5201 +64 9 525 0568 IANZ# 1402

Address:

Project Name: Project ID:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Regional Geotechnical Solutions

44 Bent Street Wingham NSW 2429

AQUATIC FACILITY RGS21005.6

Order No.: Report #:

Phone:

Fax:

ABN: 91 05 0159 898

1132108 (02) 65535641

Received: Aug 26, 2024 10:30 AM Sep 2, 2024 Due: Priority: 5 Dav Contact Name: Grant Colliar

		Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED*	HOLD*	Polychlorinated Biphenyls	Metals M8	Moisture Set	Eurofins Suite B9				
	ney Laboratory		Site # 18217	•		Х	Х	Х	Х	Х	Х	Х	Х
	rnal Laboratory												
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	BH301 0.1-0.2	Aug 15, 2024		Soil	X24-Au0066311					Х		Χ	Х
2	BH301 0.1-0.2 bg	Aug 15, 2024		Soil	X24-Au0066312		Х						
3	BH301 0.5-0.6	Aug 15, 2024		Soil	X24-Au0066313					Χ		Χ	Х
4	BH301 0.5-0.6 bg	Aug 15, 2024		Soil	X24-Au0066314		Х						
5	BH301 2.1 2.2 bg	Aug 15, 2024		Soil	X24-Au0066315			х					
6	BH302 0.3-0.4	Aug 15, 2024		Soil	X24-Au0066316					Х		Χ	Х
7	BH302 0.3-0.4 bg	Aug 15, 2024		Soil	X24-Au0066317		Х						
8	BH302 1.1-1.2	Aug 15, 2024		Soil	X24-Au0066318					Х		Χ	Х
9	BH302 1.1-1.2 bg	Aug 15, 2024		Soil	X24-Au0066319		Х						
10	BH302 2.1-2.2 bg	Aug 15, 2024		Soil	X24-Au0066320			х					

ABN: 50 005 085 521

Melbourne Geelong Sydney 6 Monterey Road Dandenong South Grovedale Girraween VIC 3175 VIC 3216 NSW 2145 +61 2 9900 8400 +61 3 8564 5000 +61 3 8564 5000 NATA# 1261 NATA# 1261 NATA# 1261 Site# 1254 Site# 25403 Site# 18217

Canberra Mitchell ACT 2911 +61 2 6113 8091 NATA# 1261 Site# 25466

Brisbane Newcastle 19/8 Lewalan Street 179 Magowar Road Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West QLD 4172 NSW 2304 T: +61 7 3902 4600 +61 2 4968 8448 NATA# 1261 NATA# 1261 Site# 20794 & 2780 Site# 25079

Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370

NZBN: 9429046024954

ABN: 47 009 120 549 Perth ProMicro 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2561 Site# 2554

Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

Auckland (Focus) Christchurch Unit C1/4 Pacific Rise. 43 Detroit Drive Mount Wellington, Rolleston, Auckland 1061 +64 3 343 5201 +64 9 525 0568 IANZ# 1308 IANZ# 1290

Tauranga 1277 Cameron Road. Gate Pa, Christchurch 7675 Tauranga 3112 +64 9 525 0568 IANZ# 1402

Address:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Regional Geotechnical Solutions

44 Bent Street Wingham NSW 2429

Project Name: Project ID:

AQUATIC FACILITY

RGS21005.6

Order No.: Report #:

Phone:

Fax:

ABN: 91 05 0159 898

1132108 (02) 65535641

Priority:

Received: Aug 26, 2024 10:30 AM Sep 2, 2024 Due:

5 Dav Contact Name: Grant Colliar

	Sample Detail Sydney Laboratory - NATA # 1261 Site # 18217								HOLD*	Polychlorinated Biphenyls	Metals M8	Moisture Set	Eurofins Suite B9
Sydi	ney Laboratory	- NATA # 1261	Site # 18217	7		Х	Х	Х	Х	Х	Х	Х	Х
11	BH303 0.3-0.4	Aug 15, 2024		Soil	X24-Au0066321					Х		Х	Х
12	BH303 0.3-0.4 bg	Aug 15, 2024		Soil	X24-Au0066322		Х						
13	BH303 1-1.1 bg	Aug 15, 2024		Soil	X24-Au0066323			Х					
14	BH304 0.2-0.3	Aug 15, 2024		Soil	X24-Au0066324					Х		Х	Х
15	BH304 0.2-0.3 bg	Aug 15, 2024		Soil	X24-Au0066325		х						
16	BH304 0.8-0.9	Aug 15, 2024		Soil	X24-Au0066326					Х		Х	Х
17	BH304 0.8-0.9 bg	Aug 15, 2024		Soil	X24-Au0066327		Х						
18	BH305 00.2	Aug 15, 2024		Soil	X24-Au0066328					Х		Х	Х
19	BH305 00.2 bg	Aug 15, 2024		Soil	X24-Au0066329		Х						
20	BH305 1-1.1	Aug 15, 2024		Soil	X24-Au0066330					Х		Х	Х
21	BH305 1-1.1 bg	Aug 15, 2024		Soil	X24-Au0066331		Х						
22	BH306 0.1-0.2	Aug 15, 2024		Soil	X24-Au0066332					Х		Х	Х
23	BH306 0.1-0.2	Aug 15, 2024		Soil	X24-Au0066333			Х					

Site# 25403

ABN: 50 005 085 521

Melbourne Geelong Canberra Sydney 6 Monterey Road 19/8 Lewalan Street 179 Magowar Road Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Dandenong South Grovedale Girraween Mitchell VIC 3175 VIC 3216 NSW 2145 ACT 2911 +61 2 9900 8400 +61 3 8564 5000 +61 3 8564 5000 +61 2 6113 8091 NATA# 1261 NATA# 1261 NATA# 1261 NATA# 1261

Site# 18217

Site# 25466

Brisbane Newcastle Murarrie Mayfield West QLD 4172 NSW 2304 +61 2 4968 8448 T: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 20794 & 2780 Site# 25079

Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 47 009 120 549 Perth ProMicro 46-48 Banksia Road

Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

NZBN: 9429046024954

Received:

Auckland (Focus) Unit C1/4 Pacific Rise. Mount Wellington, Auckland 1061 +64 9 525 0568 IANZ# 1308

Aug 26, 2024 10:30 AM

Christchurch Tauranga 43 Detroit Drive 1277 Cameron Road. Rolleston, Gate Pa, Christchurch 7675 Tauranga 3112 +64 3 343 5201 +64 9 525 0568 IANZ# 1290 IANZ# 1402

Address:

Project Name: Project ID:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Regional Geotechnical Solutions

44 Bent Street Wingham NSW 2429

AQUATIC FACILITY RGS21005.6

Site# 1254

Order No.: Report #:

Phone:

Fax:

ABN: 91 05 0159 898

1132108 (02) 65535641

Welshpool

WA 6106

NATA# 2561

Site# 2554

+61 8 6253 4444

Sep 2, 2024 Due: Priority: 5 Dav Contact Name: Grant Colliar

		Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED*	HOLD*	Polychlorinated Biphenyls	Metals M8	Moisture Set	Eurofins Suite B9				
Syd	ney Laboratory	- NATA # 1261	Site # 18217	•		Х	Х	Х	Х	Х	Χ	Х	Х
23	BH306 0.1-0.2 bg	Aug 15, 2024		Soil	X24-Au0066333								
24	BH306 0.4-0.5	Aug 15, 2024		Soil	X24-Au0066334					Х		Х	Х
25	BH306 0.4-0.5 bg	Aug 15, 2024		Soil	X24-Au0066335		Х						
26	BH307 0.1-0.2	Aug 15, 2024		Soil	X24-Au0066336					Х		Х	Х
27	BH307 0.1-0.2 bg	Aug 15, 2024		Soil	X24-Au0066337		Χ						
28	BH307 0.4-0.5 bg	Aug 15, 2024		Soil	X24-Au0066338		Χ						
29	BH308 0.3-0.4	Aug 15, 2024		Soil	X24-Au0066339					Х		Х	Х
30	BH308 0.3-0.4 bg	Aug 15, 2024		Soil	X24-Au0066340		Х						
31	BH308 0.6-0.7	Aug 15, 2024		Soil	X24-Au0066341					Х		Х	Х
32	BH308 0.6-0.7 bg	Aug 15, 2024		Soil	X24-Au0066342		Х						
33	BH309 0.2-0.3	Aug 15, 2024		Soil	X24-Au0066343					Х		Х	Х
34	BH309 0.2-0.3 bg	Aug 15, 2024		Soil	X24-Au0066344		Х						

email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

Site# 25403

ABN: 50 005 085 521

Melbourne Geelong Canberra Sydney 6 Monterey Road 19/8 Lewalan Street 179 Magowar Road Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Dandenong South Grovedale Girraween Mitchell VIC 3175 VIC 3216 NSW 2145 ACT 2911 +61 2 9900 8400 +61 3 8564 5000 +61 3 8564 5000 +61 2 6113 8091 NATA# 1261 NATA# 1261 NATA# 1261 NATA# 1261

Site# 18217

Site# 25466

Brisbane Newcastle Murarrie Mayfield West QLD 4172 NSW 2304 +61 2 4968 8448 T: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 20794 & 2780 Site# 25079

Asbestos

Asbestos -

HOLD*

Polychlorina Metals M8

CANCELLE

Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370

Phone:

Moisture Se Eurofins Su

Fax:

ABN: 47 009 120 549 NZBN: 9429046024954

Perth ProMicro

Welshpool

NATA# 2561

Site# 2554

WA 6106

Auckland 46-48 Banksia Road 35 O'Rorke Road Penrose, Auckland 1061 +61 8 6253 4444 +64 9 526 4551 IANZ# 1327

Auckland (Focus) Unit C1/4 Pacific Rise. Mount Wellington, Auckland 1061 +64 9 525 0568 IANZ# 1308

Christchurch Tauranga 43 Detroit Drive 1277 Cameron Road. Rolleston, Gate Pa, Christchurch 7675 Tauranga 3112 +64 3 343 5201 +64 9 525 0568 IANZ# 1290 IANZ# 1402

Address:

web: www.eurofins.com.au

Company Name: Regional Geotechnical Solutions

44 Bent Street Wingham NSW 2429

Project Name: Project ID:

AQUATIC FACILITY RGS21005.6

Site# 1254

Order No.: Report #:

ABN: 91 05 0159 898

1132108 (02) 65535641 Received: Aug 26, 2024 10:30 AM Sep 2, 2024 Due: Priority: 5 Dav Contact Name: Grant Colliar

	Sample Detail									ated Biphenyls		et	lite B9
Syd	ney Laboratory	- NATA # 1261	Site # 18217	7		Х	Х	Х	Х	Х	Х	Х	Х
35	BH309 0.6-0.7	Aug 15, 2024		Soil	X24-Au0066345					Х		Х	Х
36	BH309 0.6-0.7 bg	Aug 15, 2024		Soil	X24-Au0066346		х						
37	BH309 1.4-1.5 bg	Aug 15, 2024		Soil	X24-Au0066347			х					
38	BH310 0.3-0.4	Aug 15, 2024		Soil	X24-Au0066348					Х		Х	Х
39	BH310 0.3-0.4 bg	Aug 15, 2024		Soil	X24-Au0066349		X						
40	BH310 0.9-1.0	Aug 15, 2024		Soil	X24-Au0066350					Х		Х	Х
41	BH310 0.9-1.0 bg	Aug 15, 2024		Soil	X24-Au0066351		х						
42	BH311 0.3-0.4	Aug 15, 2024		Soil	X24-Au0066352					Х		Х	Х
43	BH311 0.3-0.4 bg	Aug 15, 2024		Soil	X24-Au0066353		х						
44	BH311 0.8-0.9	Aug 15, 2024		Soil	X24-Au0066354					Х		Х	Х
45	BH311 0.8-0.9 bg	Aug 15, 2024		Soil	X24-Au0066355		х						
46	BH311 1.2-13 bg	Aug 15, 2024		Soil	X24-Au0066356		Х						

Site# 25403

ABN: 50 005 085 521

Melbourne Geelong Canberra Sydney 6 Monterey Road Dandenong South Grovedale Girraween VIC 3175 VIC 3216 NSW 2145 +61 2 9900 8400 +61 3 8564 5000 +61 3 8564 5000 NATA# 1261 NATA# 1261 NATA# 1261

Site# 18217

Brisbane 19/8 Lewalan Street 179 Magowar Road Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Mitchell Murarrie ACT 2911 QLD 4172 +61 2 6113 8091 T: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 20794 & 2780 Site# 25466

Newcastle Mayfield West NSW 2304 +61 2 4968 8448 NATA# 1261 Site# 25079

ABN: 91 05 0159 898 ABN: 47 009 120 549

Perth ProMicro 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2561 Site# 2554

Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551

IANZ# 1327

NZBN: 9429046024954

Auckland (Focus) Christchurch Unit C1/4 Pacific Rise. 43 Detroit Drive Mount Wellington, Rolleston, Auckland 1061 +64 3 343 5201 +64 9 525 0568 IANZ# 1308 IANZ# 1290

Tauranga 1277 Cameron Road. Gate Pa, Christchurch 7675 Tauranga 3112 +64 9 525 0568 IANZ# 1402

Address:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Regional Geotechnical Solutions

Project Name: Project ID:

44 Bent Street

Wingham NSW 2429

AQUATIC FACILITY RGS21005.6

Site# 1254

Site# 2370 Order No.: Report #:

Phone:

Fax:

Perth

Welshpool

NATA# 2377

WA 6106

46-48 Banksia Road

+61 8 6253 4444

1132108 (02) 65535641 Received: Aug 26, 2024 10:30 AM Sep 2, 2024 Due:

Priority: 5 Dav Contact Name: Grant Colliar

		Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED*	HOLD*	Polychlorinated Biphenyls	Metals M8	Moisture Set	Eurofins Suite B9				
Syd	ney Laboratory	- NATA # 1261	Site # 18217	,		Х	Х	Χ	Χ	Х	Х	Χ	Х
47	BH311 2.2-2.3 bg	Aug 15, 2024		Soil	X24-Au0066357			х					
48	BH312 0.2-0.3	Aug 15, 2024		Soil	X24-Au0066358					Х		Χ	Х
49	BH312 0.2-0.3 bg	Aug 15, 2024		Soil	X24-Au0066359		Х						
50	BH312 0.8-0.9	Aug 15, 2024		Soil	X24-Au0066360					Х		Χ	Х
51	BH312 0.8-0.9 bg	Aug 15, 2024		Soil	X24-Au0066361		х						
52	BH312 1.4-1.5 bg	Aug 15, 2024		Soil	X24-Au0066362		Х						
53	BH313 0.5-0.6	Aug 15, 2024		Soil	X24-Au0066363					Х		Χ	Х
54	BH313 0.5-0.6 bg	Aug 15, 2024		Soil	X24-Au0066364		Х						
55	BH313 1.4-1.5 bg	Aug 15, 2024		Soil	X24-Au0066365		Х						
56	BH314 0.1-0.2	Aug 15, 2024		Soil	X24-Au0066366					Х		Х	Х
57	BH314 0.1-0.2 bg	Aug 15, 2024		Soil	X24-Au0066367		Х						
58	BH314 0.7-0.8	Aug 15, 2024		Soil	X24-Au0066368					Х		Χ	Х

ABN: 50 005 085 521

Melbourne Geelong Sydney 6 Monterey Road Dandenong South Grovedale Girraween VIC 3175 VIC 3216 NSW 2145 +61 2 9900 8400 +61 3 8564 5000 +61 3 8564 5000 NATA# 1261 NATA# 1261 NATA# 1261

Site# 18217

Site# 25403

Canberra Brisbane 19/8 Lewalan Street 179 Magowar Road Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Mitchell Murarrie ACT 2911 QLD 4172 +61 2 6113 8091 T: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 20794 & 2780 Site# 25466

Asb

Newcastle Mayfield West NSW 2304 +61 2 4968 8448 NATA# 1261 Site# 25079

Poly HQL

Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 47 009 120 549 NZBN: 9429046024954

Perth ProMicro 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2561 Site# 2554

Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

Auckland (Focus) Unit C1/4 Pacific Rise. Mount Wellington, Auckland 1061 +64 9 525 0568 IANZ# 1308

Christchurch Tauranga 43 Detroit Drive 1277 Cameron Road. Rolleston, Gate Pa, Christchurch 7675 Tauranga 3112 +64 3 343 5201 +64 9 525 0568 IANZ# 1290 IANZ# 1402

Address:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Regional Geotechnical Solutions

44 Bent Street Wingham NSW 2429

Project Name: Project ID:

AQUATIC FACILITY

Site# 1254

RGS21005.6

Order No.: Report #:

Phone:

Fax:

Meta Mois

ABN: 91 05 0159 898

1132108 (02) 65535641

Aug 26, 2024 10:30 AM Received: Sep 2, 2024 Due: Priority: 5 Dav Contact Name: Grant Colliar

	Sample Detail Sydney Laboratory - NATA # 1261 Site # 18217								NCELLED*	LD*	/chlorinated BiphenyIs	als M8	sture Set	ofins Suite B9
Sydi	ney Laboratory	- NATA # 1261	Site # 18217	,			Х	Х	Х	Х	Х	Х	Х	Х
59	BH314 0.7-0.8 bg	Aug 15, 2024		Soil	X24-Au006	6369		х						
60	BH314 1.2-1.3 bg	Aug 15, 2024		Soil	X24-Au006	6370			Х					
61	BH315 0.5-0.6	Aug 15, 2024		Soil	X24-Au006	6371					Х		Х	Х
62	BH315 0.5-0.6 bg	Aug 15, 2024		Soil	X24-Au006	6372		х						
63	BH315 1.5-1.6	Aug 15, 2024		Soil	X24-Au006	6373					Х		Х	Х
64	BH315 1.5-1.6 bg	Aug 15, 2024		Soil	X24-Au006	6374			Х					
65	BH316 0.3-0.4	Aug 16, 2024		Soil	X24-Au006	6375					Х		Х	Х
66	BH316 0.3-0.4 bg	Aug 16, 2024		Soil	X24-Au006	6376		х						
67	BH316 1.3-1.4 Bg	Aug 16, 2024		Soil	X24-Au006	6377		Х						
68	BH317 0.2-0.3	Aug 16, 2024		Soil	X24-Au006	6378					Х		Х	Х
69	BH317 0.2-0.3 bg	Aug 16, 2024		Soil	X24-Au006	6379		Х						
70	BH317 0.6-0.7	Aug 16, 2024		Soil	X24-Au006	6380					Χ		Х	Х

NATA# 1261

Site# 25403

ABN: 50 005 085 521

Melbourne Geelong Sydney 6 Monterey Road Dandenong South Grovedale Girraween VIC 3175 VIC 3216 NSW 2145 +61 2 9900 8400 +61 3 8564 5000 +61 3 8564 5000

NATA# 1261

Site# 18217

Canberra Brisbane Newcastle 19/8 Lewalan Street 179 Magowar Road Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Mitchell Murarrie ACT 2911 QLD 4172 +61 2 6113 8091 T: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 20794 & 2780 Site# 25466

Perth 46-48 Banksia Road Mayfield West Welshpool NSW 2304 WA 6106 +61 2 4968 8448 +61 8 6253 4444 NATA# 1261 NATA# 2377 Site# 2370 Site# 25079

ABN: 47 009 120 549 NZBN: 9429046024954

Perth ProMicro 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2561 Site# 2554

Auckland Auckland (Focus) 35 O'Rorke Road Unit C1/4 Pacific Rise. Penrose, Mount Wellington, Auckland 1061 Auckland 1061 +64 9 526 4551 +64 9 525 0568 IANZ# 1327 IANZ# 1308

Christchurch 43 Detroit Drive Rolleston, +64 3 343 5201 IANZ# 1290

Tauranga 1277 Cameron Road. Gate Pa, Christchurch 7675 Tauranga 3112 +64 9 525 0568 IANZ# 1402

Address:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Regional Geotechnical Solutions

44 Bent Street

Wingham NSW 2429

Project Name: Project ID:

AQUATIC FACILITY RGS21005.6

NATA# 1261

Site# 1254

Order No.: Report #: Phone:

Fax:

1132108 (02) 65535641

ABN: 91 05 0159 898

Received: Aug 26, 2024 10:30 AM Sep 2, 2024 Due: Priority: 5 Dav Contact Name: Grant Colliar

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail			Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED*	HOLD*	Polychlorinated Biphenyls	Metals M8	Moisture Set	Eurofins Suite B9
Sydi	ney Laboratory	- NATA # 1261	Site # 18217	·		Х	Х	Х	Х	Х	Х	Х	Х
71	BH317 0.6-0.7 bg	Aug 16, 2024		Soil	X24-Au0066381		х						
72	BH317 1-1 bg	Aug 16, 2024		Soil	X24-Au0066382			Х					
73	BH318 0.3-0.4	Aug 16, 2024		Soil	X24-Au0066383					Х		Х	Х
74	BH318 0.3-0.4 bg	Aug 16, 2024		Soil	X24-Au0066384		х						
75	BH318 1.2-1.3 bg	Aug 16, 2024		Soil	X24-Au0066385			Х					
76	BH319 0.2-0.3	Aug 16, 2024		Soil	X24-Au0066386					Х		Х	Х
77	BH319 0.2-0.3 bg	Aug 16, 2024		Soil	X24-Au0066387		Х						
78	BH319 0.7-0.8	Aug 16, 2024		Soil	X24-Au0066388					Х		Х	Х
79	BH319 0.7-0.8 bg	Aug 16, 2024		Soil	X24-Au0066389			Х					
80	BH320 0.4-0.5	Aug 16, 2024		Soil	X24-Au0066390					Х		Х	Х
81	BH320 0.4-0.5 bg	Aug 16, 2024		Soil	X24-Au0066391		Х						
82	BH320 1-1.1 bg	Aug 16, 2024		Soil	X24-Au0066392		Х						

ABN: 50 005 085 521

Melbourne Geelong Sydney 6 Monterey Road Dandenong South Grovedale Girraween VIC 3175 VIC 3216 NSW 2145 +61 2 9900 8400 +61 3 8564 5000 +61 3 8564 5000 NATA# 1261 NATA# 1261 NATA# 1261

Site# 18217

Site# 25403

Canberra Brisbane Newcastle 19/8 Lewalan Street 179 Magowar Road Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Mitchell Murarrie Mayfield West ACT 2911 QLD 4172 NSW 2304 +61 2 4968 8448 +61 2 6113 8091 T: +61 7 3902 4600 NATA# 1261 NATA# 1261 NATA# 1261 Site# 20794 & 2780 Site# 25466 Site# 25079

Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370

Phone:

Fax:

ABN: 91 05 0159 898

ABN: 47 009 120 549 Perth ProMicro 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444

NATA# 2561

Site# 2554

Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

NZBN: 9429046024954

Auckland (Focus) Unit C1/4 Pacific Rise. Mount Wellington, Auckland 1061 +64 9 525 0568 IANZ# 1308

Christchurch Tauranga 43 Detroit Drive 1277 Cameron Road. Rolleston, Gate Pa, Christchurch 7675 Tauranga 3112 +64 3 343 5201 +64 9 525 0568 IANZ# 1290 IANZ# 1402

Address:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Regional Geotechnical Solutions

44 Bent Street Wingham NSW 2429

Project Name: Project ID:

RGS21005.6

Site# 1254

AQUATIC FACILITY

Received: Order No.: Aug 26, 2024 10:30 AM Report #: 1132108 Due:

Sep 2, 2024 (02) 65535641 Priority: 5 Dav Contact Name: Grant Colliar

		Sa	ımple Detail			Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED*	HOLD*	Polychlorinated Biphenyls	Metals M8	Moisture Set	Eurofins Suite B9
Sydı	ney Laboratory	NATA # 1261	Site # 18217	,	_	Х	Х	Х	Χ	Х	Х	Х	Х
83	BH321 0.1-0.2	Aug 16, 2024		Soil	X24-Au0066393					Х		Х	Х
84	BH321 0.1-0.2 bg	Aug 16, 2024		Soil	X24-Au0066394		Х						
85	BH321 0.5-0.6 bg	Aug 16, 2024		Soil	X24-Au0066395		х						
86	BH321 1.2-1.3	Aug 16, 2024		Soil	X24-Au0066396					Х		Х	Х
87	BH321 1.2-1.3 bg	Aug 16, 2024		Soil	X24-Au0066397			Х					
88	BH322 0.3-0.4	Aug 16, 2024		Soil	X24-Au0066398					Х		Х	Х
89	BH322 0.3-0.4 bg	Aug 16, 2024		Soil	X24-Au0066399		Х						
90	BH322 1.5-1.6 bg	Aug 16, 2024		Soil	X24-Au0066400		Х						
91	BH323 0.2- 0.25	Aug 16, 2024		Soil	X24-Au0066401					Х		Х	х
92	BH323 0.2- 0.25 bg	Aug 16, 2024		Soil	X24-Au0066402		Х						
93	BH323 0.3-0.4	Aug 16, 2024		Soil	X24-Au0066403					Х		Х	Х
94	BH323 0.3-0.4	Aug 16, 2024		Soil	X24-Au0066404		Х						

ABN: 50 005 085 521

Melbourne Geelong Sydney 6 Monterey Road 19/8 Lewalan Street 179 Magowar Road Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Dandenong South Grovedale Girraween VIC 3175 VIC 3216 NSW 2145 +61 2 9900 8400 +61 3 8564 5000 +61 3 8564 5000 NATA# 1261 NATA# 1261 NATA# 1261

Site# 25403

Site# 18217

Canberra Brisbane Mitchell Murarrie ACT 2911 QLD 4172 +61 2 6113 8091 NATA# 1261 NATA# 1261 Site# 25466

Newcastle Mayfield West NSW 2304 +61 2 4968 8448 T: +61 7 3902 4600 NATA# 1261 Site# 20794 & 2780 Site# 25079

Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 47 009 120 549 Perth ProMicro

46-48 Banksia Road

+61 8 6253 4444

Welshpool

WA 6106

NATA# 2561

Site# 2554

NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

Auckland (Focus) Christchurch Unit C1/4 Pacific Rise. 43 Detroit Drive Mount Wellington, Rolleston, Auckland 1061 +64 3 343 5201 +64 9 525 0568 IANZ# 1308 IANZ# 1290

Tauranga 1277 Cameron Road. Gate Pa, Christchurch 7675 Tauranga 3112 +64 9 525 0568 IANZ# 1402

Address:

Project Name: Project ID:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Regional Geotechnical Solutions

44 Bent Street Wingham NSW 2429

AQUATIC FACILITY RGS21005.6

Site# 1254

Order No.: Report #:

Phone:

Fax:

ABN: 91 05 0159 898

1132108 (02) 65535641

Received: Aug 26, 2024 10:30 AM Sep 2, 2024 Due: Priority: 5 Dav Contact Name: Grant Colliar

		Sa	mple Detail			Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED*	HOLD*	Polychlorinated Biphenyls	Metals M8	Moisture Set	Eurofins Suite B9
Sydı	ney Laboratory	- NATA # 1261	Site # 18217	,		Х	Х	Х	Χ	Х	Х	Х	Х
	bg												
95	BH324 0.7-0.8	Aug 16, 2024		Soil	X24-Au0066405					Х		Х	Х
96	BH324 0.7-0.8 bg	Aug 16, 2024		Soil	X24-Au0066406		Х						
97	BH325 0.5-0.6	Aug 16, 2024		Soil	X24-Au0066407					Х		Х	Х
98	BH325 0.5-0.6 bg	Aug 16, 2024		Soil	X24-Au0066408		Х						
99	BH325 2-2.1	Aug 16, 2024		Soil	X24-Au0066409					Х		Х	Х
100	BH325 2-2.1 bg	Aug 16, 2024		Soil	X24-Au0066410		Х						
101	BH326 0.2-0.3	Aug 16, 2024		Soil	X24-Au0066411					Х		Х	Х
102	BH326 0.2-0.3 bg	Aug 16, 2024		Soil	X24-Au0066412		Х						
103	BH326 0.9-1	Aug 16, 2024		Soil	X24-Au0066413					Х		Х	Х
104	BH326 0.9-1 bg	Aug 16, 2024		Soil	X24-Au0066414		Х						
105	BH326 2.5-2.6 bg	Aug 16, 2024		Soil	X24-Au0066415			Х					
106	BH327 0.6-0.7	Aug 16, 2024		Soil	X24-Au0066416					Х		Х	Х

ABN: 50 005 085 521

Melbourne Geelong Sydney 6 Monterey Road Dandenong South Grovedale Girraween VIC 3175 VIC 3216 NSW 2145 +61 2 9900 8400 +61 3 8564 5000 +61 3 8564 5000 NATA# 1261 NATA# 1261 NATA# 1261

Site# 18217

Site# 25403

Canberra Brisbane Newcastle 19/8 Lewalan Street 179 Magowar Road Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Mitchell Murarrie Mayfield West ACT 2911 QLD 4172 NSW 2304 +61 2 4968 8448 +61 2 6113 8091 T: +61 7 3902 4600 NATA# 1261 NATA# 1261 NATA# 1261 Site# 20794 & 2780 Site# 25466 Site# 25079

Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370

Fax:

ABN: 91 05 0159 898

ABN: 47 009 120 549 Perth ProMicro 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444

NATA# 2561

Site# 2554

Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

NZBN: 9429046024954

Auckland (Focus) Christchurch Unit C1/4 Pacific Rise. 43 Detroit Drive Mount Wellington, Rolleston, Auckland 1061 +64 3 343 5201 +64 9 525 0568 IANZ# 1308 IANZ# 1290

Tauranga 1277 Cameron Road. Gate Pa, Christchurch 7675 Tauranga 3112 +64 9 525 0568 IANZ# 1402

Address:

Project Name: Project ID:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Regional Geotechnical Solutions

44 Bent Street

Wingham NSW 2429

AQUATIC FACILITY RGS21005.6

Site# 1254

Received: Order No.: Aug 26, 2024 10:30 AM Report #: Sep 2, 2024 1132108 Due:

Phone: (02) 65535641 Priority: 5 Dav Contact Name: Grant Colliar

		Sa	mple Detail			Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED*	HOLD*	Polychlorinated Biphenyls	Metals M8	Moisture Set	Eurofins Suite B9
Sydr	ney Laboratory	- NATA # 1261	Site # 18217	,		Х	Х	Х	Χ	Х	Х	Х	Х
107	BH327 0.6-0.7 bg	Aug 16, 2024		Soil	X24-Au0066417		х						
108	BH327 1.2-1.3	Aug 16, 2024		Soil	X24-Au0066418					Х		Х	Х
109	BH327 1.2-1.3 bg	Aug 16, 2024		Soil	X24-Au0066419		Х						
110	BH327 2.8-2.9 bg	Aug 16, 2024		Soil	X24-Au0066420		Х						
111	TP1 0-0.1	Aug 16, 2024		Soil	X24-Au0066421					Χ		Х	Х
112	TP1 0.5-0.6	Aug 16, 2024		Soil	X24-Au0066422					Х		Х	Х
113	TP1 0.9-1.0	Aug 16, 2024		Soil	X24-Au0066423			Х					
114	TP1 1.5 bg	Aug 16, 2024		Soil	X24-Au0066424	Х							
115	TP2 0.1-0.1	Aug 16, 2024		Soil	X24-Au0066425					Х		Х	Х
116	TP2 0.2-0.3	Aug 16, 2024		Soil	X24-Au0066426					Х		Х	Х
117	TP3 0-0.1	Aug 16, 2024		Soil	X24-Au0066427					Х		Х	Х
118	TP3 0.4-0.5	Aug 16, 2024		Soil	X24-Au0066428					Х		Х	Х
119	TP4 0-0.1	Aug 16, 2024		Soil	X24-Au0066429					Х		Х	Х
120	TP6 0-0.1	Aug 16, 2024		Soil	X24-Au0066430					Х		Х	Х
121	TP6 0.4-0.5	Aug 16, 2024		Soil	X24-Au0066431					Χ		Х	Χ

ABN: 50 005 085 521

Melbourne Geelong Sydney 6 Monterey Road Dandenong South Grovedale Girraween VIC 3175 VIC 3216 NSW 2145 +61 3 8564 5000 +61 3 8564 5000 NATA# 1261 NATA# 1261 NATA# 1261

Site# 25403

Canberra 19/8 Lewalan Street 179 Magowar Road Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Mitchell ACT 2911 +61 2 9900 8400 +61 2 6113 8091 NATA# 1261 Site# 18217 Site# 25466

Brisbane

Murarrie

QLD 4172

NATA# 1261

Newcastle Mayfield West NSW 2304 +61 2 4968 8448 T: +61 7 3902 4600 NATA# 1261 Site# 20794 & 2780 Site# 25079

Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444

ABN: 91 05 0159 898

Perth ProMicro 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2561 Site# 2554

ABN: 47 009 120 549

Auckland 35 O'Rorke Road Penrose, Auckland 1061

+64 9 526 4551

IANZ# 1327

NZBN: 9429046024954

Auckland (Focus) Christchurch Unit C1/4 Pacific Rise. 43 Detroit Drive Mount Wellington, Rolleston, Auckland 1061 +64 3 343 5201 +64 9 525 0568 IANZ# 1308 IANZ# 1290

Tauranga 1277 Cameron Road. Gate Pa, Christchurch 7675 Tauranga 3112 +64 9 525 0568 IANZ# 1402

Address:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Regional Geotechnical Solutions

44 Bent Street

Wingham NSW 2429

Project Name: Project ID:

AQUATIC FACILITY RGS21005.6

Site# 1254

Order No.: Report #: Phone:

Fax:

NATA# 2377

Site# 2370

1132108 (02) 65535641 Received: Aug 26, 2024 10:30 AM Sep 2, 2024 Due: Priority: 5 Dav Contact Name: Grant Colliar

			mple Detail			Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED*	HOLD*	Polychlorinated Biphenyls	Metals M8	Moisture Set	Eurofins Suite B9
Sydr	ey Laboratory -	NATA # 1261	Site # 18217		_	Х	Х	Х	Х	Х	Х	Х	Х
122	TP6 0.9-1 bg	Aug 16, 2024		Soil	X24-Au0066432	Χ							
123	TP7 0.5-0.6	Aug 16, 2024		Soil	X24-Au0066433					Χ		Χ	Х
124	TP8 0.3-0.4	Aug 16, 2024		Soil	X24-Au0066434					Χ		Χ	Х
125	TP8 0.7-0.9 bg	Aug 16, 2024		Soil	X24-Au0066435	Χ							
126	TP8 0.9-1.2 bg	Aug 16, 2024		Soil	X24-Au0066436	Χ							
127	TP9 0.2-0.3	Aug 16, 2024		Soil	X24-Au0066437					Χ		Χ	Х
128	TP9 0.7-0.8	Aug 16, 2024		Soil	X24-Au0066438					Χ		Χ	Х
129	TP10 0.3-0.4	Aug 16, 2024		Soil	X24-Au0066439					Χ		Χ	Х
130	TP10 1.5-1.8 bg	Aug 16, 2024		Soil	X24-Au0066440	Х							
131	TP10 1.8-2 bg	Aug 16, 2024		Soil	X24-Au0066441	Χ							
132	D1 0-0.1	Aug 16, 2024		Soil	X24-Au0066442						Χ	Χ	
133	D2	Aug 16, 2024		Soil	X24-Au0066443						Χ	Χ	
134	D3	Aug 16, 2024		Soil	X24-Au0066444						Х	Х	
135	D4	Aug 16, 2024		Soil	X24-Au0066445						Х	Х	
136	D5	Aug 16, 2024		Soil	X24-Au0066446						Χ	Χ	
137	D6	Aug 16, 2024		Soil	X24-Au0066447						Х	Х	

email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Geelong Canberra Sydney 6 Monterey Road 19/8 Lewalan Street 179 Magowar Road Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Dandenong South Grovedale Girraween Mitchell VIC 3175 VIC 3216 NSW 2145 ACT 2911 +61 2 9900 8400 +61 3 8564 5000 +61 3 8564 5000 +61 2 6113 8091 NATA# 1261 NATA# 1261 NATA# 1261 NATA# 1261 Site# 1254 Site# 25403 Site# 18217 Site# 25466

Brisbane Newcastle Murarrie Mayfield West QLD 4172 NSW 2304 +61 2 4968 8448 T: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 20794 & 2780 Site# 25079

Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 91 05 0159 898

ABN: 47 009 120 549 Perth ProMicro 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2561

Site# 2554

Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

NZBN: 9429046024954

Auckland (Focus) Unit C1/4 Pacific Rise. Mount Wellington, Auckland 1061 +64 9 525 0568 IANZ# 1308

Christchurch Tauranga 43 Detroit Drive 1277 Cameron Road. Rolleston, Gate Pa, Christchurch 7675 Tauranga 3112 +64 3 343 5201 +64 9 525 0568 IANZ# 1290 IANZ# 1402

Address:

web: www.eurofins.com.au

Company Name: Regional Geotechnical Solutions

44 Bent Street Wingham NSW 2429

Project Name: Project ID:

AQUATIC FACILITY RGS21005.6

Order No.: Report #: Phone:

Fax:

1132108 (02) 65535641

Received: Aug 26, 2024 10:30 AM Sep 2, 2024 Due: Priority: 5 Dav Contact Name: Grant Colliar

Eurofins Analytical Services Manager: Andrew Black

		Sa	mple Detail			Asbestos - AS4964	Asbestos - WA guidelines	CANCELLED*	HOLD*	Polychlorinated Biphenyls	Metals M8	Moisture Set	Eurofins Suite B9
Sydr	ey Laboratory	- NATA # 1261	Site # 18217	,		Χ	Х	Χ	Х	Χ	Х	Х	Х
138	TP5 0-0.1	Aug 15, 2024		Soil	X24-Au0066668				Χ				
139	TP5 0.5-0.6	Aug 15, 2024		Soil	X24-Au0066669				Х				
140	TP7 1-1.1	Aug 15, 2024		Soil	X24-Au0066670				Χ				
141	TP10 1-1.2	Aug 15, 2024		Soil	X24-Au0066671				Х				
Test	Counts					6	51	14	4	60	6	66	60

Internal Quality Control Review and Glossary General

- QC data may be available on request.
 All soil results are reported on a dry basis, unless otherwise stated
- Samples were analysed on an 'as received' basis
- Information identified on this report with the colour blue indicates data provided by customer that may have an impact on the results
- 5. This report replaces any interim results previously issued

Holding Times

Please refer to the most recent version of the 'Sample Preservation and Container Guide' for holding times (QS3001).

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported. Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

Units

Percentage weight-for-weight basis, e.g. of asbestos in asbestos-containing finds in soil samples (% w/w)

F/fld

Airborne fibre filter loading as Fibres (N) per Fields counted (n)
Airborne fibre reported concentration as Fibres per millilitre of air drawn over the sampler membrane (C)
Mass, e.g. of whole sample (M) or asbestos-containing find within the sample (m) g, kg

Concentration in grams per kilogram Volume, e.g. of air as measured in AFM (**V** = **r** x **t**) g/kg L, mL

Airborne fibre sampling Flowrate as litres per minute of air drawn over the sampler membrane (r) Time (t), e.g. of air sample collection period L/min

min

Calculations

Airborne Fibre Concentration: $C = \left(\frac{A}{a}\right) \times \left(\frac{N}{p}\right) \times \left(\frac{1}{r}\right) \times \left(\frac{1}{t}\right) = K \times \left(\frac{N}{p}\right) \times \left(\frac{1}{V}\right)$

Asbestos Content (as asbestos): $\% w/w = \frac{(m \times P_A)}{M}$ Weighted Average (of asbestos): $\%_{WA} = \sum_{\cdot} \frac{(m \times P_A)_x}{\cdot}$

Terms

Estimated percentage of asbestos in a given matrix may be derived from knowledge or experience of the material, informed by HSG264 *Appendix 2*, else assumed to be 15% in accordance with WA DOH *Appendix 2* (**P**_A). This estimate is not NATA-accredited. %asbestos

ACM stos Containing Materials. Asbestos contained within a non-asbestos matrix, typically presented in bonded (non-friable) condition. For the purposes of the

NEPM and WA DOH, ACM corresponds to material larger than 7 mm x 7 mm.

ΑF Asbestos Fines. Asbestos contamination within a soil sample, as defined by WA DOH. Includes loose fibre bundles and small pieces of friable and non-friable

material such as asbestos cement fragments mixed with soil. Considered under the NEPM as equivalent to "non-bonded / friable

AFM Airborne Fibre Monitoring, e.g., by the MFM.

Amosite Amosite Asbestos Detected. Amosite may also refer to Fibrous Grunerite or Brown Asbestos. Identified in accordance with AS 4964-2004.

Asbestos Content (as asbestos) Total %w/w asbestos content in asbestos-containing finds in a soil sample (% w/w)

Chrysotile Chrysotile Asbestos Detected. Chrysotile may also refer to Fibrous Serpentine or White Asbestos. Identified in accordance with AS 4964-2004.

COC Chain of Custody

Crocidolite Crocidolite Asbestos Detected. Crocidolite may also refer to Fibrous Riebeckite or Blue Asbestos. Identified in accordance with AS 4964-2004.

Dry Sample is dried by heating prior to analysis

DS Dispersion Staining. Technique required for Unequivocal Identification of asbestos fibres by PLM.

Fibrous Asbestos. Asbestos containing material that is wholly or in part friable, including materials with higher asbestos content with a propensity to become friable with handling, and any material that was previously non-friable and in a severely degraded condition. For the purposes of the NEPM and WA DOH, FA FA

generally corresponds to material larger than 7 mm x 7 mm, although FA may be more difficult to visibly distinguish and may be assessed as AF.

Fibre Count Total of all fibres (whether asbestos or not) meeting the counting criteria set out in the NOHSC:3003

Fibre ID Fibre Identification. Unequivocal identification of asbestos fibres according to AS 4964-2004. Includes Chrysotile, Amosite (Grunerite) or Crocidolite asbestos. Friable Asbestos-containing materials of any size that may be broken or crumbled by hand pressure. For the purposes of the NEPM, this includes both AF and FA. It is

outside of the laboratory's remit to assess degree of friability

HSG248 UK HSE HSG248. Asbestos: The Analysts Guide. 2nd Edition (2021).

HSG264 UK HSE HSG264, Asbestos: The Survey Guide (2012)

ISO (also ISO/IEC) International Organization for Standardization / International Electrotechnical Commission.

Microscope constant (K) as derived from the effective filter area of the given AFM membrane used for collecting the sample (A) and the projected eyepiece K Factor

graticule area of the specific microscope used for the analysis (a).

LOR

NEPM (also ASC NEPM)

First Reported: Sep 06, 2024

WA DOH

MFM (also NOHSC:3003) Membrane Filter Method. As described by the Australian Government National Occupational Health and Safety Commission. Guidance Note on the Membrane

Filter Method for Estimating Airborne Asbestos Fibres, 2nd Edition [NOHSC:3003(2005)]. National Environment Protection (Assessment of Site Contamination) Measure, (2013, as amended)

Organic Organic Fibres Detected. Organic may refer to Natural or Man-Made Polymeric Fibres. Identified in accordance with AS 4964-2004

PCM Phase Contrast Microscopy. As used for Fibre Counting according to the MFM.

PLM Polarised Light Microscopy. As used for Fibre Identification and Trace Analysis according to AS 4964-2004. Sampling Unless otherwise stated Eurofins are not responsible for sampling equipment or the sampling process

SMF Synthetic Mineral Fibre Detected. SMF may also refer to Man Made Vitreous Fibres. Identified in accordance with AS 4964-2004

SRA

Trace Analysis Analytical procedure used to detect the presence of respirable fibres (particularly asbestos) in a given sample matrix.

UK HSE HSG United Kingdom, Health and Safety Executive, Health and Safety Guidance, publication.

UMF Unidentified Mineral Fibre Detected. Fibrous minerals that are detected but have not been unequivocally identified by PLM with DS according the AS 4964-2004. May include (but not limited to) Actinolite, Anthophyllite or Tremolite asbestos

> Reference document for the NEPM. Government of Western Australia, Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia (updated 2021), including Appendix Four: Laboratory analysis

Weighted Average Combined average %w/w asbestos content of all asbestos-containing finds in the given aliquot or total soil sample (%wA).

Comments

24-Au0066312, 24-Au0066317 - 24-Au0066322, 24-Au0066329, 24-Au0066331, 24-Au0066340 - 24-Au0066344, 24-Au0066349, 24-Au0066351, 24-Au0066365, 24-Au0066365, 24-Au0066376, 24-Au0066379, 24-Au0066384 - 24-Au0066399, 24-Au0066402 - 24-Au0066406, 24-Au0066412, 24-Au0066419: Samples received were less than the nominal 500mL as recommended in Section 4.10 of the NEPM Schedule B1 - Guideline on Investigation Levels for Soil and Groundwater.

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Asbestos Counter/Identifier:

Sayeed Abu Senior Analyst-Asbestos

Authorised by:

Chamath JHM Annakkage Senior Analyst-Asbestos

Glenn Jackson

Managing Director

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 1132108-AID

ABN: 50 005 085 521 Telephone: +61 2 9900 8400

Regional Geotechnical Solutions 44 Bent Street Wingham NSW 2429 lac-MRA

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Grant Colliar

Report 1132108-S

Project name AQUATIC FACILITY
Project ID RGS21005.6
Received Date Aug 26, 2024

Client Sample ID			BH301 0.1-0.2	BH301 0.5-0.6	BH302 0.3-0.4	BH302 1.1-1.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			X24- Au0066311	X24- Au0066313	X24- Au0066316	X24- Au0066318
Date Sampled			Aug 15, 2024	Aug 15, 2024	Aug 15, 2024	Aug 15, 2024
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM I	Fractions	'				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
ВТЕХ	•					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	97	125	105	62
Total Recoverable Hydrocarbons - 2013 NEPM I	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2)*N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			BH301 0.1-0.2	BH301 0.5-0.6	BH302 0.3-0.4	BH302 1.1-1.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			X24- Au0066311	X24- Au0066313	X24- Au0066316	X24- Au0066318
Date Sampled			Aug 15, 2024	Aug 15, 2024	Aug 15, 2024	Aug 15, 2024
Test/Reference	LOR	Unit	7.43 10, 202 1	7 tag 10, 202 t	7 tag 10, 202 t	/ tag :0, 202 :
Polycyclic Aromatic Hydrocarbons	LOI	Offic				
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	130	100	99	68
p-Terphenyl-d14 (surr.)	1	%	143	111	128	86
Organochlorine Pesticides		1				
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	123	77	72	66
Tetrachloro-m-xylene (surr.)	1	%	130	91	93	55
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	123	77	72	66
Tetrachloro-m-xylene (surr.)	1	%	130	91	93	55
Total Recoverable Hydrocarbons - 2013 NEPN						1
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100

Client Sample ID			BH301 0.1-0.2	BH301 0.5-0.6	BH302 0.3-0.4	BH302 1.1-1.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			X24- Au0066311	X24- Au0066313	X24- Au0066316	X24- Au0066318
Date Sampled			Aug 15, 2024	Aug 15, 2024	Aug 15, 2024	Aug 15, 2024
Test/Reference	LOR	Unit				
Metals M8						
Arsenic	2	mg/kg	5.2	12	2.9	3.2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	85	32	300	200
Copper	5	mg/kg	6.9	< 5	7.2	5.7
Lead	5	mg/kg	11	11	12	< 5
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	28	< 5	70	16
Zinc	5	mg/kg	16	< 5	17	< 5
Sample Properties		_				
% Moisture	1	%	21	21	21	14

Client Sample ID			BH303 0.3-0.4	BH304 0.2-0.3	BH304 0.8-0.9	BH305 00.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			X24- Au0066321	X24- Au0066324	X24- Au0066326	X24- Au0066328
•						
Date Sampled			Aug 15, 2024	Aug 15, 2024	Aug 15, 2024	Aug 15, 2024
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	91	109	115	110
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2)*N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			BH303 0.3-0.4	BH304 0.2-0.3	BH304 0.8-0.9	BH305 00.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			X24- Au0066321	X24- Au0066324	X24- Au0066326	X24- Au0066328
Date Sampled			Aug 15, 2024	Aug 15, 2024	Aug 15, 2024	Aug 15, 2024
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		J 01				
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	106	52	64	98
p-Terphenyl-d14 (surr.)	1	%	130	INT	111	111
Organochlorine Pesticides	'	1 /0	100	1111	1	111
Chlordanes - Total	0.1	mg/kg	< 0.1	< 1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.5	< 0.1	< 0.1
4.4'-DDD 4.4'-DDE	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
b-HCH	0.05		< 0.05	< 0.5	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
		mg/kg	< 0.05	< 0.5		< 0.05
Endosulfan II	0.05	mg/kg			< 0.05	1
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
Hexachlorobenzene Makhawan lahar	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 10	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.5	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	122	53	85	76
Tetrachloro-m-xylene (surr.)	1	%	109	57	80	82
Polychlorinated Biphenyls	<u> </u>					
Aroclor-1016	0.1	mg/kg	< 0.1	< 1	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	< 1	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 1	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	< 1	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	< 1	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 1	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 1	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	122	53	85	76
Tetrachloro-m-xylene (surr.)	1	%	109	57	80	82

Client Sample ID			BH303 0.3-0.4	BH304 0.2-0.3	BH304 0.8-0.9	BH305 00.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			X24- Au0066321	X24- Au0066324	X24- Au0066326	X24- Au0066328
Date Sampled			Aug 15, 2024	Aug 15, 2024	Aug 15, 2024	Aug 15, 2024
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions					
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Metals M8						
Arsenic	2	mg/kg	4.0	< 2	< 2	2.2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	340	110	170	120
Copper	5	mg/kg	< 5	8.3	< 5	7.2
Lead	5	mg/kg	6.3	40	7.4	13
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	31	29	28	23
Zinc	5	mg/kg	< 5	23	< 5	22
Sample Properties						
% Moisture	1	%	21	21	17	21

Client Sample ID			BH305 1-1.1	BH306 0.1-0.2	BH306 0.4-0.5	BH307 0.1-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			X24- Au0066330	X24- Au0066332	X24- Au0066334	X24- Au0066336
Date Sampled			Aug 15, 2024	Aug 15, 2024	Aug 15, 2024	Aug 15, 2024
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	113	86	119	98
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2)*N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			BH305 1-1.1	BH306 0.1-0.2	BH306 0.4-0.5	BH307 0.1-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			X24- Au0066330	X24- Au0066332	X24- Au0066334	X24- Au0066336
Date Sampled			Aug 15, 2024	Aug 15, 2024	Aug 15, 2024	Aug 15, 2024
Test/Reference	LOR	Unit	7 tag 10, 202 i	7149 10, 2021	7 tag 10, 202 t	7 tag 10, 202 t
Polycyclic Aromatic Hydrocarbons	LOR	Unit				
Anthracene	0.5	m a/lea	.0.5	< 0.5	. O F	. O F
Benz(a)anthracene	0.5 0.5	mg/kg	< 0.5 < 0.5	< 0.5	< 0.5 < 0.5	< 0.5 < 0.5
Benzo(a)pyrene	0.5	mg/kg mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5		< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	// // // // // // // // // // // // //	112	72	86	117
p-Terphenyl-d14 (surr.)	1	%	128	102	91	INT
Organochlorine Pesticides	· ·	70	120	102	31	
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 10
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 1
Dibutylchlorendate (surr.)	1	%	110	72	69	70
Tetrachloro-m-xylene (surr.)	1	%	113	72	82	106

Client Sample ID			BH305 1-1.1	BH306 0.1-0.2	BH306 0.4-0.5	BH307 0.1-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			X24- Au0066330	X24- Au0066332	X24- Au0066334	X24- Au0066336
·						
Date Sampled			Aug 15, 2024	Aug 15, 2024	Aug 15, 2024	Aug 15, 2024
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls	1					
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 1
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 1
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 1
Dibutylchlorendate (surr.)	1	%	110	72	69	70
Tetrachloro-m-xylene (surr.)	1	%	113	72	82	106
Total Recoverable Hydrocarbons - 2013 NEPM	I Fractions					
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Metals M8						
Arsenic	2	mg/kg	3.9	2.0	4.9	2.2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	220	120	290	75
Copper	5	mg/kg	8.5	5.2	12	11
Lead	5	mg/kg	5.5	13	9.8	13
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	9.7	19	11	14
Zinc	5	mg/kg	< 5	16	< 5	26
Sample Properties						
% Moisture	1	%	16	19	15	19

Client Sample ID			BH308 0.3-0.4	BH308 0.6-0.7	BH309 0.2-0.3	BH309 0.6-0.7
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			X24- Au0066339	X24- Au0066341	X24- Au0066343	X24- Au0066345
Date Sampled			Aug 15, 2024	Aug 15, 2024	Aug 15, 2024	Aug 15, 2024
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	110	110	120	113

Client Sample ID			BH308 0.3-0.4	BH308 0.6-0.7	BH309 0.2-0.3	BH309 0.6-0.7
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			X24- Au0066339	X24- Au0066341	X24- Au0066343	X24- Au0066345
Date Sampled			Aug 15, 2024	Aug 15, 2024	Aug 15, 2024	Aug 15, 2024
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2)*N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	121	96	125	120
p-Terphenyl-d14 (surr.)	1	%	146	103	138	119
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfon sulphoto	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05 0.05	mg/kg	< 0.05 < 0.05	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05
Heptachlor Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachior epoxide Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05		< 0.05
Metnoxycnior Toxaphene	0.05	mg/kg mg/kg	< 0.05	< 0.05 < 0.5	< 0.05 < 0.5	< 0.05

Client Sample ID			BH308 0.3-0.4	BH308 0.6-0.7	BH309 0.2-0.3	BH309 0.6-0.7
Sample Matrix			Soil	Soil	Soil	Soil
			X24-	X24-	X24-	X24-
Eurofins Sample No.			Au0066339	Au0066341	Au0066343	Au0066345
Date Sampled			Aug 15, 2024	Aug 15, 2024	Aug 15, 2024	Aug 15, 2024
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	123	97	122	114
Tetrachloro-m-xylene (surr.)	1	%	121	91	119	115
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	123	97	122	114
Tetrachloro-m-xylene (surr.)	1	%	121	91	119	115
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Metals M8						
Arsenic	2	mg/kg	< 2	2.5	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	96	83	58	69
Copper	5	mg/kg	6.8	15	< 5	< 5
Lead	5	mg/kg	18	6.8	6.6	< 5
Mercury	0.1	mg/kg	< 0.1	0.2	< 0.1	< 0.1
Nickel	5	mg/kg	15	67	13	12
Zinc	5	mg/kg	6.2	19	8.2	< 5
Sample Properties						
% Moisture	1	%	16	29	18	15

Client Sample ID			BH310 0.3-0.4	BH310 0.9-1.0	BH311 0.3-0.4	BH311 0.8-0.9
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			X24- Au0066348	X24- Au0066350	X24- Au0066352	X24- Au0066354
Date Sampled			Aug 15, 2024	Aug 15, 2024	Aug 15, 2024	Aug 15, 2024
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM Fract	ions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	36
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	680
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	540
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	1256

Client Sample ID			BH310 0.3-0.4	BH310 0.9-1.0	BH311 0.3-0.4	BH311 0.8-0.9
Sample Matrix			Soil	Soil	Soil	Soil
Cample Matrix			X24-	X24-	X24-	X24-
Eurofins Sample No.			Au0066348	Au0066350	Au0066352	Au0066354
Date Sampled			Aug 15, 2024	Aug 15, 2024	Aug 15, 2024	Aug 15, 2024
Test/Reference	LOR	Unit				
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	85	104	98	126
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions	•				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2)*N01	50	mg/kg	< 50	< 50	< 50	86
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons		<u> </u>				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	109	87	INT	121
p-Terphenyl-d14 (surr.)	1	%	123	108	INT	124
Organochlorine Pesticides		70	123	106	IINI	124
	0.4		.0.1	.0.1	.0.1	.0.4
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin Factoral (a.e.)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05 0.05	mg/kg	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05

			T	1	1	1
Client Sample ID			BH310 0.3-0.4	BH310 0.9-1.0	BH311 0.3-0.4	BH311 0.8-0.9
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			X24- Au0066348	X24- Au0066350	X24- Au0066352	X24- Au0066354
Date Sampled			Aug 15, 2024	Aug 15, 2024	Aug 15, 2024	Aug 15, 2024
Test/Reference	LOR	Unit		3 3, 3	3 3, 3	
Organochlorine Pesticides	LOIX	Onic				
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05		< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.05		< 0.05	< 0.05	< 0.05	< 0.03
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	mg/kg %	135	70	INT	120
Tetrachloro-m-xylene (surr.)	1	%	111	77	INT	124
Polychlorinated Biphenyls	l l	70	111	11	IINI	124
	0.4		.0.4	.0.4	.0.4	.04
Aroclor-1016 Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1
	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Arcelor 1242	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Arcelor 1242	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1248 Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1260 Total PCB*	0.1	mg/kg	< 0.1		< 0.1	< 0.1
		mg/kg %	135	< 0.1 70	INT	120
Dibutylchlorendate (surr.)	1 1	%	111	77	INT	120
Tetal Passycrable Hydrogerbone 2013 NEBM Fr		70	111	11	IIN I	124
Total Recoverable Hydrocarbons - 2013 NEPM Fra			50	50	50	00
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	86
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	1000
TRH > C34-C40	100	mg/kg	< 100	< 100	< 100	360
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	1446
Metals M8				_		
Arsenic	2	mg/kg	2.7	< 2	12	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	180	77	160	120
Copper	5	mg/kg	8.2	< 5	17	6.0
Lead	5	mg/kg	10	< 5	16	< 5
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	46	20	23	80
Zinc	5	mg/kg	8.7	< 5	25	7.3
Sample Properties						
% Moisture	1	%	19	13	23	14

Client Sample ID			BH312 0.2-0.3	BH312 0.8-0.9	BH313 0.5-0.6	BH314 0.1-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			X24- Au0066358	X24- Au0066360	X24- Au0066363	X24- Au0066366
Date Sampled			Aug 15, 2024	Aug 15, 2024	Aug 15, 2024	Aug 15, 2024
•	LOD	l lasis	Aug 13, 2024	Aug 13, 2024	Aug 13, 2024	Aug 13, 2024
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM		T ,,				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	102	81	101	86
Total Recoverable Hydrocarbons - 2013 NEPM		T				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2)*N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons	1	T				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene Total PAU*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	81	95	73	68 INIT
p-Terphenyl-d14 (surr.)	1	%	105	73	90	INT
Organochlorine Pesticides					2 :	0.1
Chlordanes - Total	0.1	mg/kg	< 1	< 1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05

Client Sample ID			BH312 0.2-0.3	BH312 0.8-0.9	BH313 0.5-0.6	BH314 0.1-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			X24- Au0066358	X24- Au0066360	X24- Au0066363	X24- Au0066366
Date Sampled			Aug 15, 2024	Aug 15, 2024	Aug 15, 2024	Aug 15, 2024
Test/Reference	LOR	Unit			3 3,	
Organochlorine Pesticides	LOIN	Offic				
b-HCH	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
q-HCH (Lindane)	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
Toxaphene	0.05	mg/kg	< 10	< 10	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.5	< 0.5	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 1	< 1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 1	< 1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	74	INT	76	55
Tetrachloro-m-xylene (surr.)	1	%	97	116	71	60
Polychlorinated Biphenyls	<u>'</u>	,,,	0.	110		
Aroclor-1016	0.1	mg/kg	< 1	< 1	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 1	< 1	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 1	< 1	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 1	< 1	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 1	< 1	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 1	< 1	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 1	< 1	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 1	< 1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	74	INT	76	55
Tetrachloro-m-xylene (surr.)	1	%	97	116	71	60
Total Recoverable Hydrocarbons - 2013 NEPM Fra			0.	110		
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Metals M8	100	IIIg/Rg	V 100	V 100	V 100	V 100
Arsenic	2	ma/ka	4.5	9.9	< 2	5.1
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	170	790	70	190
	5	mg/kg	18	25	5.4	190
Copper Lead	5	mg/kg	27	22	< 5	11
	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Mercury Nickel	5	mg/kg	< 0.1 49	180	13	20
Zinc	5	mg/kg	37	21	5.0	12
Sample Properties	<u> </u>	mg/kg	31	21	3.0	12
Jampie Froperties			<u> </u>			

Client Commis ID			BU0440 = 0.0	BU045 0 5 0 0	5110454540	BU0400004
Client Sample ID			BH314 0.7-0.8	BH315 0.5-0.6	BH315 1.5-1.6	BH316 0.3-0.4
Sample Matrix			Soil	Soil X24-	Soil X24-	Soil X24-
Eurofins Sample No.			X24- Au0066368	Au0066371	Au0066373	Au0066375
Date Sampled			Aug 15, 2024	Aug 15, 2024	Aug 15, 2024	Aug 16, 2024
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM F	ractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	60	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	60	< 50	< 50	< 50
BTEX	·					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	67	146	86	87
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions	•				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2)*N01	50	mg/kg	53	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons	l l					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	57	79	70	55
p-Terphenyl-d14 (surr.)	1	%	86	INT	62	69
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05

				1	1	1
Client Sample ID			BH314 0.7-0.8	BH315 0.5-0.6	BH315 1.5-1.6	BH316 0.3-0.4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			X24- Au0066368	X24- Au0066371	X24- Au0066373	X24- Au0066375
Date Sampled			Aug 15, 2024	Aug 15, 2024	Aug 15, 2024	Aug 16, 2024
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	54	63	68	50
Tetrachloro-m-xylene (surr.)	1	%	54	73	65	54
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	54	63	68	50
Tetrachloro-m-xylene (surr.)	1	%	54	73	65	54
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions					
TRH >C10-C16	50	mg/kg	53	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Metals M8						
Arsenic	2	mg/kg	< 2	2.4	8.8	7.6
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	60	59	200	150
Copper	5	mg/kg	5.3	10	49	25
Lead	5	mg/kg	5.7	10	5.6	5.4
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	31	21	200	200
Zinc	5	mg/kg	8.0	15	51	11
Sample Properties						
% Moisture	1	%	19	20	24	16

Olient Commis ID			BU047.00.00	DU047.00.07	BU040 0 0 0 4	DU040000
Client Sample ID			BH317 0.2-0.3	BH317 0.6-0.7	BH318 0.3-0.4	BH319 0.2-0.3
Sample Matrix			Soil X24-	Soil X24-	Soil X24-	Soil X24-
Eurofins Sample No.			Au0066378	Au0066380	Au0066383	Au0066386
Date Sampled			Aug 16, 2024	Aug 16, 2024	Aug 16, 2024	Aug 16, 2024
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	113	118	99	96
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2)*N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons	•					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	53	79	INT	135
p-Terphenyl-d14 (surr.)	1	%	INT	104	INT	INT
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
а-НСН	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05

Client Sample ID			BU247 0 2 0 2	BU247.0.6.0.7	BU249 0 2 0 4	BH240 0 2 0 2
-			BH317 0.2-0.3	BH317 0.6-0.7	BH318 0.3-0.4	BH319 0.2-0.3
Sample Matrix Eurofins Sample No.			Soil X24- Au0066378	Soil X24- Au0066380	Soil X24- Au0066383	Soil X24- Au0066386
Date Sampled			Aug 16, 2024	Aug 16, 2024	Aug 16, 2024	Aug 16, 2024
•	1.00	1.1	Aug 10, 2024	Aug 10, 2024	Aug 10, 2024	Aug 10, 2024
Test/Reference	LOR	Unit				
Organochlorine Pesticides	<u> </u>					
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 10	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 1	< 0.1
Dibutylchlorendate (surr.)	1	%	70	94	70	107
Tetrachloro-m-xylene (surr.)	1	%	61	86	70	128
Polychlorinated Biphenyls		1				
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	< 1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	< 1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	< 1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	< 1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	< 1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	< 1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	< 1	< 0.1
Dibutylchlorendate (surr.)	1	%	70	94	70	107
Tetrachloro-m-xylene (surr.)	1 1	%	61	86	70	128
Total Recoverable Hydrocarbons - 2013 NEPM Fra		1				
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Metals M8						
Arsenic	2	mg/kg	< 2	12	6.1	2.2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	22	140	150	87
Copper	5	mg/kg	< 5	17	17	11
Lead	5	mg/kg	5.0	7.5	110	12
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	9.8	70	24	15
Zinc	5	mg/kg	15	17	82	22
Sample Properties						
% Moisture	1	%	19	19	16	22

Client Commis ID			DU040 0 7 0 0	511000 0 4 0 5	BU004 0 4 0 0	DU004 4 0 4 0
Client Sample ID			BH319 0.7-0.8	BH320 0.4-0.5	BH321 0.1-0.2	BH321 1.2-1.3
Sample Matrix			Soil X24-	Soil X24-	Soil X24-	Soil X24-
Eurofins Sample No.			Au0066388	Au0066390	Au0066393	Au0066396
Date Sampled			Aug 16, 2024	Aug 16, 2024	Aug 16, 2024	Aug 16, 2024
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions	•				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	84	< 50	52
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	84	< 50	52
ВТЕХ	L					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	74	122	90	107
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions	•				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2)*N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons	•	, , ,				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	64	122	80	69
p-Terphenyl-d14 (surr.)	1	%	134	114	97	77
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
а-НСН	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05

Client Sample ID			BU240 0 7 0 0	BU220 0 4 0 5	DU1224 0 4 0 2	DU1204 4 0 4 2
-			BH319 0.7-0.8	BH320 0.4-0.5	BH321 0.1-0.2 Soil	BH321 1.2-1.3
Sample Matrix Eurofins Sample No.			Soil X24- Au0066388	Soil X24- Au0066390	X24- Au0066393	Soil X24- Au0066396
Date Sampled			Aug 16, 2024	Aug 16, 2024	Aug 16, 2024	Aug 16, 2024
•	1.00	1.1	Aug 10, 2024	Aug 10, 2024	Aug 10, 2024	Aug 10, 2024
Test/Reference	LOR	Unit				
Organochlorine Pesticides	<u> </u>					
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IMPO 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	90	+	100	61
Tetrachloro-m-xylene (surr.)	1	%	80	131	86	68
Polychlorinated Biphenyls	0.4		0.4	0.4	0.4	0.4
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Arcolor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Arcelor 1232	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Arcolor-1242	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Arcolor 1254	0.1	mg/kg	< 0.1 < 0.1	< 0.1	< 0.1 < 0.1	< 0.1
Arcelor 1260		mg/kg		< 0.1		< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.) Tetrachloro-m-xylene (surr.)	1	%	90	121	100 86	61
Total Recoverable Hydrocarbons - 2013 NEPM Fr	1	%	80	131	00	68
-			50	50	50	50
TRH > C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH > C16-C34	100	mg/kg	< 100	100	< 100	< 100
TRH > C10 C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	100	< 100	< 100
Metals M8		"	6.0		10	
Arsenic	2	mg/kg	2.2	< 2	48	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	140	170	220	75
Copper	5	mg/kg	< 5	< 5	33	< 5
Lead	5	mg/kg	6.4	< 5	16	5.2
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	28	150	35	21
Zinc	5	mg/kg	< 5	6.2	22	< 5
Sample Properties		T -				
% Moisture	1	%	20	15	22	20

Client Sample ID			BH322 0.3-0.4	BH323 0.2-0.25	BH323 0.3-0.4	BH324 0.7-0.8
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			X24- Au0066398	X24- Au0066401	X24- Au0066403	X24- Au0066405
Date Sampled			Aug 16, 2024	Aug 16, 2024	Aug 16, 2024	Aug 16, 2024
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM						
TRH C6-C9	20	mg/kg	21	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
BTEX	1 00	i iig/iig	100	100	100	100
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
o-Xylene	0.2	mg/kg	< 0.1	< 0.1	< 0.2	< 0.2
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	119	116	87	126
Total Recoverable Hydrocarbons - 2013 NEPM		70	113	110	01	120
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2)*N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	21	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	21	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons	20	IIIg/kg	21	\ 20	< 20	\ 20
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (inediam bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	108	83	66	103
p-Terphenyl-d14 (surr.)	1	%	144	92	79	114
Organochlorine Pesticides					-	
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05

Client Semple ID			BU222 0 2 0 4	BU222 0 2 0 25	DU1202 0 2 0 4	DU1224 0 7 0 0
Client Sample ID			BH322 0.3-0.4	1	BH323 0.3-0.4	BH324 0.7-0.8
Sample Matrix Eurofins Sample No.			Soil X24- Au0066398	Soil X24- Au0066401	Soil X24- Au0066403	Soil X24- Au0066405
·			1			
Date Sampled			Aug 16, 2024	Aug 16, 2024	Aug 16, 2024	Aug 16, 2024
Test/Reference	LOR	Unit				
Organochlorine Pesticides		1				
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	132	71	INT	96
Tetrachloro-m-xylene (surr.)	1	%	111	82	56	103
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Arcelor-1242	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Arcelor-1248	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	132	71	INT	96
Tetrachloro-m-xylene (surr.)	1	%	111	82	56	103
Total Recoverable Hydrocarbons - 2013 NEPM Fra		1 "		50		50
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH > C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH > C10 C10 C10 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Metals M8			60		0.0	6.7
Arsenic	2	mg/kg	36	< 2	3.2	2.7
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	250	170	260	150
Copper	5	mg/kg	24	< 5	< 5	< 5
Lead	5	mg/kg	11	< 5	6.1	< 5
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	34	30	29	12
Zinc	5	mg/kg	7.4	< 5	< 5	< 5
Sample Properties					2.	
% Moisture	1	%	20	15	21	16

Client Sample ID			BH325 0.5-0.6	BH325 2-2.1	BH326 0.2-0.3	BH326 0.9-1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			X24- Au0066407	X24- Au0066409	X24- Au0066411	X24- Au0066413
Date Sampled			Aug 16, 2024	Aug 16, 2024	Aug 16, 2024	Aug 16, 2024
•	1.00	1.121	Aug 10, 2024	Aug 10, 2024	Aug 10, 2024	Aug 10, 2024
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM		T ,,				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
BTEX		T ,,				
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	119	122	106	125
Total Recoverable Hydrocarbons - 2013 NEPM		Т "				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2)*N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons	T	T				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	1.3	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	1.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.8	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	0.8	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	1.0	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	1.1	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	0.6	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	0.7	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	1.3	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	2.4	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	2.4	< 0.5
Pyrene Total PAH*		mg/kg	< 0.5	< 0.5	11	< 0.5
Total PAH*	0.5	mg/kg %	< 0.5	< 0.5 121	106	< 0.5
2-Fluorobiphenyl (surr.)	1	%	109		106	131
p-Terphenyl-d14 (surr.)	1	70	INT	134	109	143
Organochlorine Pesticides Chlordonae Total	0.4	m = /1 - =	- 1	-04	- 1	-04
Chlordanes - Total	0.1	mg/kg	< 1	< 0.1	< 1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.5	< 0.05	< 0.5	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.5	< 0.05	< 0.5	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.5	< 0.05	< 0.5	< 0.05
a-HCH	0.05	mg/kg	< 0.5	< 0.05	< 0.5	< 0.05
Aldrin	0.05	mg/kg	< 0.5	< 0.05	< 0.5	< 0.05

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			BH325 0.5-0.6 Soil	BH325 2-2.1	BH326 0.2-0.3	BH326 0.9-1
Eurofins Sample No. Date Sampled					Soil	Soil
Date Sampled			X24- Au0066407	Soil X24- Au0066409	X24- Au0066411	X24- Au0066413
•			Aug 16, 2024	Aug 16, 2024	Aug 16, 2024	Aug 16, 2024
	1.00	1.1	Aug 10, 2024	Aug 10, 2024	Aug 10, 2024	Aug 10, 2024
Test/Reference	LOR	Unit				+
Organochlorine Pesticides						
b-HCH	0.05	mg/kg	< 0.5	< 0.05	< 0.5	< 0.05
d-HCH	0.05	mg/kg	< 0.5	< 0.05	< 0.5	< 0.05
Dieldrin	0.05	mg/kg	< 0.5	< 0.05	< 0.5	< 0.05
Endosulfan I	0.05	mg/kg	< 0.5	< 0.05	< 0.5	< 0.05
Endosulfan II	0.05	mg/kg	< 0.5	< 0.05	< 0.5	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.5	< 0.05	< 0.5	< 0.05
Endrin	0.05	mg/kg	< 0.5	< 0.05	< 0.5	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.5	< 0.05	< 0.5	< 0.05
Endrin ketone	0.05	mg/kg	< 0.5	< 0.05	< 0.5	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.5	< 0.05	< 0.5	< 0.05
Heptachlor	0.05	mg/kg	< 0.5 < 0.5	< 0.05 < 0.05	< 0.5 < 0.5	< 0.05 < 0.05
Heptachlor epoxide	0.05	mg/kg				
Hexachlorobenzene	0.05	mg/kg	< 0.5	< 0.05	< 0.5	< 0.05
Methoxychlor	0.05	mg/kg	< 0.5	< 0.05	< 0.5	< 0.05
Toxaphene	0.5	mg/kg	< 10 < 0.5	< 0.5	< 10 < 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.5	< 0.05		< 0.05 < 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg		< 0.05 < 0.1	< 0.5 < 1	< 0.05
Vic EPA IWRG 621 OCP (Total)* Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	<1	< 0.1	< 1	< 0.1
` ,	1	mg/kg %	INT	126	68	132
Dibutylchlorendate (surr.)	1	%	104	131	106	128
Tetrachloro-m-xylene (surr.) Polychlorinated Biphenyls	·	70	104	131	106	120
Aroclor-1016	0.4		. 4	.0.4		.04
	0.1	mg/kg	<1	< 0.1	< 1	< 0.1
Aroclor-1221 Aroclor-1232	0.1	mg/kg	<1	< 0.1	<1	< 0.1
Aroclor-1232 Aroclor-1242	0.1	mg/kg	<1	< 0.1	< 1	< 0.1
Aroclor-1248	0.1	mg/kg	<1	< 0.1	< 1	< 0.1
Aroclor-1254	0.1	mg/kg mg/kg	<1	< 0.1	< 1	< 0.1
Aroclor-1260	0.1	mg/kg	<1	< 0.1	< 1	< 0.1
Total PCB*	0.1	mg/kg	<1	< 0.1	< 1	< 0.1
Dibutylchlorendate (surr.)	1	%	INT	126	68	132
Tetrachloro-m-xylene (surr.)	1	%	104	131	106	128
Total Recoverable Hydrocarbons - 2013 NEPM Frac		/0	104	131	100	120
		ma/ka	- FO	- FO	4 FO	- 50
TRH >C10-C16 TRH >C16-C34	100	mg/kg mg/kg	< 50 < 100	< 50 < 100	< 50 < 100	< 50 < 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40 TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Metals M8	100	i iiig/kg	< 100	< 100	< 100	100
Arsenic	2	ma/ka	5.4	2.0	8.6	10
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Cadmium Chromium	5	mg/kg mg/kg	220	110	220	< 0.4 870
Copper	5	mg/kg	7.4	130	17	11
Lead	5	mg/kg	7.4	5.2	23	12
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	27	450	16	55
Zinc	5	mg/kg	15	190	26	8.9
Sample Properties	1 5	i ilig/kg	10	190	20	0.9
% Moisture	1	%	20	25	16	14

Client Sample ID			BH327 0.6-0.7	BH327 1.2-1.3	TP1 0-0.1	TP1 0.5-0.6
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			X24- Au0066416	X24- Au0066418	X24- Au0066421	X24- Au0066422
Date Sampled			Aug 16, 2024	Aug 16, 2024	Aug 16, 2024	Aug 16, 2024
•	LOD	l lait	Aug 10, 2024	Aug 10, 2024	Aug 10, 2024	Aug 10, 2024
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	57	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	57	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	89	74	110	INT
Total Recoverable Hydrocarbons - 2013 NEPM		T				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2)*N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons	<u> </u>	T				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene Total PAH*		mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg %	< 0.5 99	< 0.5 112	< 0.5 142	< 0.5 96
2-Fluorobiphenyl (surr.)	1	%	104		INT	109
p-Terphenyl-d14 (surr.)	1	70	104	133	IINI	109
Organochlorine Pesticides	2.4	wa a #	.0.4	.0.4	.04	
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5

Client Sample ID			BH327 0.6-0.7	BH327 1.2-1.3	TP1 0-0.1	TP1 0.5-0.6
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			X24- Au0066416	X24- Au0066418	X24- Au0066421	X24- Au0066422
Date Sampled			Aug 16, 2024	Aug 16, 2024	Aug 16, 2024	Aug 16, 2024
Test/Reference	LOR	Unit	Aug 10, 2024	Aug 10, 2024	Aug 10, 2024	Aug 10, 2024
	LOR	Unit				
Organochlorine Pesticides	0.05		.0.05	.0.05	.0.05	.0.5
b-HCH	0.05	mg/kg	< 0.05 < 0.05	< 0.05	< 0.05	< 0.5
d-HCH	0.05	mg/kg		< 0.05	< 0.05	< 0.5
Dieldrin Fadesulfen I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Endrin Fadiria aldahuda	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Endrin ketone	0.05	mg/kg	< 0.05 < 0.05	< 0.05	< 0.05	< 0.5 < 0.5
g-HCH (Lindane) Heptachlor	0.05	mg/kg	< 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.5
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Methoxychlor Toxaphene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 10
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Vic EPA IWRG 621 OCP (Total)*	0.05	mg/kg mg/kg	< 0.05	< 0.03	< 0.05	< 1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	<1
Dibutylchlorendate (surr.)	1	%	73	79	98	77
Tetrachloro-m-xylene (surr.)	1	%	80	93	138	112
Polychlorinated Biphenyls	'	/0	00	93	130	112
Aroclor-1016	0.1	ma/ka	< 0.1	< 0.1	< 0.1	< 1
Aroclor-1221	0.1	mg/kg mg/kg	< 0.1	< 0.1	< 0.1	<1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	< 0.1	<1
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	< 0.1	<1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	< 0.1	<1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	<1
Dibutylchlorendate (surr.)	1	%	73	79	98	77
Tetrachloro-m-xylene (surr.)	1 1	%	80	93	138	112
Total Recoverable Hydrocarbons - 2013 NEPM Frac		,,,	- 00		100	1.12
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	120	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	120	< 100	< 100
Metals M8	100	ı myrky	100	120	100	100
Arsenic	2	mg/kg	7.8	17	3.4	7.2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	390	1200	450	1300
Copper	5	mg/kg	10.0	39	11	23
Lead	5	mg/kg	13	15	29	26
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	74	69	69	190
Zinc	5	mg/kg	36	16	61	35
Sample Properties		, mg/kg		10	1	
Campio i roportico			1	1	1	

Client Semula ID			TD0 0 4 0 4	TD0 0 0 0 0	TD0 0 0 4	TD0 0 4 0 5
Client Sample ID			TP2 0.1-0.1	TP2 0.2-0.3	TP3 0-0.1	TP3 0.4-0.5
Sample Matrix			Soil X24-	Soil X24-	Soil X24-	Soil X24-
Eurofins Sample No.			Au0066425	Au0066426	Au0066427	Au0066428
Date Sampled			Aug 16, 2024	Aug 16, 2024	Aug 16, 2024	Aug 16, 2024
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
ВТЕХ	·					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	89	92	93	INT
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2)*N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	93	98	130	86
p-Terphenyl-d14 (surr.)	1	%	INT	86	INT	103
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05

Client Sample ID			TP2 0.1-0.1	TP2 0.2-0.3	TP3 0-0.1	TP3 0.4-0.5
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			X24- Au0066425	X24- Au0066426	X24- Au0066427	X24- Au0066428
Date Sampled			Aug 16, 2024	Aug 16, 2024	Aug 16, 2024	Aug 16, 2024
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 10	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.5	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 1	< 0.1
Dibutylchlorendate (surr.)	1	%	120	135	70	67
Tetrachloro-m-xylene (surr.)	1	%	111	122	60	74
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	< 1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	< 1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	< 1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	< 1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	< 1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	< 1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	< 1	< 0.1
Dibutylchlorendate (surr.)	1	%	120	135	70	67
Tetrachloro-m-xylene (surr.)	1	%	111	122	60	74
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Metals M8						
Arsenic	2	mg/kg	2.4	3.0	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	140	220	99	92
Copper	5	mg/kg	9.1	< 5	6.7	< 5
Lead	5	mg/kg	17	8.8	15	7.7
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	35	26	27	19
Zinc	5	mg/kg	34	< 5	34	16
Sample Properties						
% Moisture	1	%	19	20	20	14

Client Sample ID			TD4 0 0 4	TP6 0-0.1	TDC 0 4 0 5	TP7 0.5-0.6
Sample Matrix			TP4 0-0.1 Soil	Soil	TP6 0.4-0.5 Soil	111111111111
Eurofins Sample No.			X24- Au0066429	X24- Au0066430	X24- Au0066431	Soil X24- Au0066433
•					1	
Date Sampled			Aug 16, 2024	Aug 16, 2024	Aug 16, 2024	Aug 16, 2024
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM		1				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	52	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	52	< 50
BTEX		1				
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	89	102	80	93
Total Recoverable Hydrocarbons - 2013 NEPM						
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2)*N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	99	59	64	73
p-Terphenyl-d14 (surr.)	1	%	103	109	81	INT
Organochlorine Pesticides		<u> </u>				
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5

Client Sample ID Sample Matrix			TP4 0-0.1	TP6 0-0.1	TP6 0.4-0.5	
Sample Matrix			Soil	Soil	Soil	TP7 0.5-0.6 Soil
Eurofins Sample No.			X24- Au0066429	X24- Au0066430	X24- Au0066431	X24- Au0066433
Date Sampled			Aug 16, 2024	Aug 16, 2024	Aug 16, 2024	Aug 16, 2024
•	LOB	Linit	Aug 10, 2024	Aug 10, 2024	Aug 10, 2024	Aug 10, 2024
Test/Reference	LOR	Unit				
Organochlorine Pesticides	1 0.05	T "	2.25	0.05	0.05	0.5
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Heptachlor anavida	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Hexachlorobenzene Mathematika	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5
Toxaphene	0.5	mg/kg	< 0.5 < 0.05	< 0.5	< 0.5	< 10
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.5 < 0.5
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05 < 0.1	< 0.05	
Vic EPA IWRG 621 OCP (Total)* Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1 < 0.1	< 1 < 1
` /	1	mg/kg %	67	< 0.1 50	< 0.1 INT	67
Dibutylchlorendate (surr.)	1	%	78	60	54	62
Tetrachloro-m-xylene (surr.) Polychlorinated Biphenyls	<u> </u>	70	70	60	54	02
Aroclor-1016	0.4		.0.4	.0.4	.0.4	- 1
	0.1	mg/kg	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 1 < 1
Aroclor-1221 Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	< 0.1	<1
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	< 0.1	<1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	< 0.1	<1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	< 0.1	<1
Aroclor-1260	0.1	mg/kg mg/kg	< 0.1	< 0.1	< 0.1	<1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	<1
Dibutylchlorendate (surr.)	1	%	67	50	INT	67
Tetrachloro-m-xylene (surr.)	1	%	78	60	54	62
Total Recoverable Hydrocarbons - 2013 NEPM Frac	_	/0	70	00	34	02
•		ma/ka	4 FO	- FO	4 FO	1.50
TRH >C10-C16 TRH >C16-C34	100	mg/kg mg/kg	< 50 < 100	< 50 < 100	< 50 110	< 50 110
TRH >C16-C34 TRH >C34-C40	100	mg/kg mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40 TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	110	110
Metals M8	100	i mg/kg	< 100	< 100	110	110
	2	ma/lia	< 2	20	7 /	77
Arsenic Cadmium	0.4	mg/kg	< 0.4	2.8 < 0.4	7.4 < 0.4	7.7 < 0.4
Cadmium Chromium	5	mg/kg	120	90	250	400
	5	mg/kg	8.9	19	88	25
Copper Lead	5	mg/kg mg/kg	12	< 5	5.4	19
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	40	44	81	150
Zinc	5	mg/kg	27	10	41	42
ZIII IC	l 0	mg/kg	<u> </u>	10	41	444
Sample Properties						

Client Semula ID			TD0 0 0 0 4	TD0 0 0 0 0	TD0 0 7 0 0	TD40 0 0 0 4
Client Sample ID			TP8 0.3-0.4	TP9 0.2-0.3	TP9 0.7-0.8	TP10 0.3-0.4
Sample Matrix			Soil X24-	Soil X24-	Soil X24-	Soil X24-
Eurofins Sample No.			Au0066434	Au0066437	Au0066438	Au0066439
Date Sampled			Aug 16, 2024	Aug 16, 2024	Aug 16, 2024	Aug 16, 2024
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	90	95	85	89
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2)*N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	102	100	64	86
p-Terphenyl-d14 (surr.)	1	%	113	113	117	104
Organochlorine Pesticides		_				
Chlordanes - Total	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
a-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Aldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05

Client Sample ID			TP8 0.3-0.4	TP9 0.2-0.3	TP9 0.7-0.8	TP10 0.3-0.4
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			X24- Au0066434	X24- Au0066437	X24- Au0066438	X24- Au0066439
Date Sampled			Aug 16, 2024	Aug 16, 2024	Aug 16, 2024	Aug 16, 2024
Test/Reference	LOR	Unit				
Organochlorine Pesticides						
b-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
d-HCH	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Toxaphene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	< 0.05	< 0.05	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	68	114	119	60
Tetrachloro-m-xylene (surr.)	1	%	84	123	108	73
Polychlorinated Biphenyls						
Aroclor-1016	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1232	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1242	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1254	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Aroclor-1260	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Total PCB*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Dibutylchlorendate (surr.)	1	%	68	114	119	60
Tetrachloro-m-xylene (surr.)	1	%	84	123	108	73
Total Recoverable Hydrocarbons - 2013 NEPM F	Fractions					
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100	< 100
Metals M8						
Arsenic	2	mg/kg	2.6	3.7	< 2	8.8
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	220	310	130	62
Copper	5	mg/kg	6.1	< 5	< 5	5.7
Lead	5	mg/kg	6.8	7.9	< 5	8.1
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	51	42	29	8.8
Zinc	5	mg/kg	7.1	7.3	7.2	6.1
Sample Properties	·					
% Moisture	1	%	18	19	15	18
		· · · · ·			1	

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			D1 0-0.1 Soil X24- Au0066442 Aug 16, 2024	D2 Soil X24- Au0066443 Aug 16, 2024	D3 Soil X24- Au0066444 Aug 16, 2024	D4 Soil X24- Au0066445 Aug 16, 2024
Test/Reference	LOR	Unit				
Metals M8						
Arsenic	2	mg/kg	< 2	3.6	3.0	11
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	110	190	150	470
Copper	5	mg/kg	< 5	9.0	8.5	25
Lead	5	mg/kg	12	< 5	16	21
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	20	11	27	110
Zinc	5	mg/kg	15	< 5	23	18
Sample Properties						
% Moisture	1	%	18	13	14	15

Client Sample ID			D5	D6
Sample Matrix			Soil	Soil
Eurofins Sample No.			X24- Au0066446	X24- Au0066447
Date Sampled			Aug 16, 2024	Aug 16, 2024
Test/Reference	LOR	Unit		
Metals M8				
Arsenic	2	mg/kg	< 2	7.4
Cadmium	0.4	mg/kg	< 0.4	< 0.4
Chromium	5	mg/kg	49	530
Copper	5	mg/kg	7.6	14
Lead	5	mg/kg	8.5	8.0
Mercury	0.1	mg/kg	< 0.1	< 0.1
Nickel	5	mg/kg	9.8	43
Zinc	5	mg/kg	17	12
Sample Properties				
% Moisture	1	%	23	18

Report Number: 1132108-S

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins Suite B9			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Aug 30, 2024	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	Aug 30, 2024	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Aug 30, 2024	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	Aug 30, 2024	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Organochlorine Pesticides	Sydney	Aug 31, 2024	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Aug 30, 2024	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Metals M8	Sydney	Aug 30, 2024	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Polychlorinated Biphenyls	Sydney	Aug 31, 2024	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
% Moisture	Sydney	Aug 26, 2024	14 Days

Report Number: 1132108-S

Site# 25403

ABN: 50 005 085 521

Melbourne Geelong Sydney Canberra 6 Monterey Road 19/8 Lewalan Street 179 Magowar Road Unit 1,2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Dandenong South Grovedale Girraween Mitchell VIC 3175 VIC 3216 NSW 2145 ACT 2911 +61 3 8564 5000 +61 2 9900 8400 +61 3 8564 5000 +61 2 6113 8091 NATA# 1261 NATA# 1261 NATA# 1261 NATA# 1261

Site# 18217

Site# 25466

Brisbane Newcastle Murarrie Mayfield West QLD 4172 NSW 2304 T: +61 7 3902 4600 +61 2 4968 8448 NATA# 1261 NATA# 1261 Site# 20794 & 2780 Site# 25079

| > | O | I | D | Z | Z | M

Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 91 05 0159 898

ABN: 47 009 120 549 Perth ProMicro

46-48 Banksia Road

+61 8 6253 4444

Welshpool

WA 6106

NATA# 2561

Site# 2554

Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

Auckland (Focus) Christchurch Unit C1/4 Pacific Rise. 43 Detroit Drive Mount Wellington, Rolleston, Auckland 1061 +64 3 343 5201 +64 9 525 0568 IANZ# 1308 IANZ# 1290

Tauranga 1277 Cameron Road. Gate Pa, Christchurch 7675 Tauranga 3112 +64 9 525 0568 IANZ# 1402

Address

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Regional Geotechnical Solutions

44 Bent Street

Wingham NSW 2429

Project Name: Project ID:

RGS21005.6

AQUATIC FACILITY

Site# 1254

Order No.: Report #: Phone:

Fax:

1132108 (02) 65535641

Received: Aug 26, 2024 10:30 AM Sep 2, 2024 Due: Priority: 5 Dav Contact Name: Grant Colliar

NZBN: 9429046024954

		Asbestos - AS4964	CANCELLED*	HOLD*	olychlorinated Biphenyls	Metals M8	Moisture Set	urofins Suite B9				
	ney Laboratory		Site # 18217	•		Х	Х	Х	Х	Х	Х	Х
Exte No	rnal Laboratory		Complina	Matrix	LAB ID							
NO	Sample ID	Sample Date	Sampling Time	Watrix	LAB ID							
1	BH301 0.1-0.2	Aug 15, 2024		Soil	X24-Au0066311				Х		Х	Х
2	BH301 0.1-0.2 bg	Aug 15, 2024		Soil	X24-Au0066312	Х						
3	BH301 0.5-0.6	Aug 15, 2024		Soil	X24-Au0066313				Χ		Х	Х
4	BH301 0.5-0.6 bg	Aug 15, 2024		Soil	X24-Au0066314	Х						
5	BH301 2.1 2.2 bg	Aug 15, 2024		Soil	X24-Au0066315		х					
6	BH302 0.3-0.4	Aug 15, 2024		Soil	X24-Au0066316				Χ		Х	Х
7	BH302 0.3-0.4 bg	Aug 15, 2024		Soil	X24-Au0066317	Х						
8	BH302 1.1-1.2	Aug 15, 2024		Soil	X24-Au0066318				Х		Х	Х
9	BH302 1.1-1.2 bg	Aug 15, 2024		Soil	X24-Au0066319	Х						
10	BH302 2.1-2.2 bg	Aug 15, 2024		Soil	X24-Au0066320		Х					

ABN: 50 005 085 521

Melbourne Geelong Sydney 6 Monterey Road Dandenong South Grovedale Girraween VIC 3175 VIC 3216 NSW 2145 +61 3 8564 5000 +61 2 9900 8400 +61 3 8564 5000 NATA# 1261 NATA# 1261 NATA# 1261

Site# 18217

Site# 25403

Canberra Brisbane Newcastle 19/8 Lewalan Street 179 Magowar Road Unit 1,2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Mitchell Murarrie Mayfield West ACT 2911 QLD 4172 NSW 2304 +61 2 6113 8091 T: +61 7 3902 4600 NATA# 1261 NATA# 1261 NATA# 1261 Site# 20794 & 2780 Site# 25466

Perth 46-48 Banksia Road Welshpool WA 6106 +61 2 4968 8448 +61 8 6253 4444 NATA# 2377 Site# 2370 Site# 25079

ABN: 47 009 120 549 Perth ProMicro

46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2561 Site# 2554

Auckland Auckland (Focus) 35 O'Rorke Road Unit C1/4 Pacific Rise. Penrose, Mount Wellington, Auckland 1061 Auckland 1061 +64 9 526 4551 +64 9 525 0568 IANZ# 1327 IANZ# 1308

NZBN: 9429046024954

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tauranga 3112 +64 3 343 5201 IANZ# 1290

Tauranga 1277 Cameron Road. Gate Pa, +64 9 525 0568 IANZ# 1402

Address

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Regional Geotechnical Solutions

44 Bent Street

Project Name: Project ID:

Wingham NSW 2429

AQUATIC FACILITY RGS21005.6

Site# 1254

Order No.: Report #: Phone:

Fax:

ABN: 91 05 0159 898

1132108 (02) 65535641

Received: Aug 26, 2024 10:30 AM Sep 2, 2024 Due: **Priority:** 5 Dav Contact Name: Grant Colliar

	Sample Detail								Polychlorinated Biphenyls	Metals M8	Moisture Set	Eurofins Suite B9
Sydr	ney Laboratory	- NATA # 1261	Site # 18217			Х	Х	Х	Х	Х	Х	Х
11	BH303 0.3-0.4	Aug 15, 2024		Soil	X24-Au0066321				Х		Х	Х
12	BH303 0.3-0.4 bg	Aug 15, 2024		Soil	X24-Au0066322	Х						
13	BH303 1-1.1 bg	Aug 15, 2024		Soil	X24-Au0066323		х					
14	BH304 0.2-0.3	Aug 15, 2024		Soil	X24-Au0066324				Х		Х	Х
15	BH304 0.2-0.3 bg	Aug 15, 2024		Soil	X24-Au0066325	Х						
16	BH304 0.8-0.9	Aug 15, 2024		Soil	X24-Au0066326				Х		Х	Х
17	BH304 0.8-0.9 bg	Aug 15, 2024		Soil	X24-Au0066327	Χ						
18	BH305 00.2	Aug 15, 2024		Soil	X24-Au0066328				Х		Х	Х
19	BH305 00.2 bg	Aug 15, 2024		Soil	X24-Au0066329	Х						
20	BH305 1-1.1	Aug 15, 2024		Soil	X24-Au0066330				Х		Х	Х
21	BH305 1-1.1 bg	Aug 15, 2024		Soil	X24-Au0066331	Х						
22	BH306 0.1-0.2	Aug 15, 2024		Soil	X24-Au0066332				Х		Х	Х
23	BH306 0.1-0.2	Aug 15, 2024		Soil	X24-Au0066333		Х					

Site# 25403

ABN: 50 005 085 521

Melbourne Geelong Sydney Canberra 6 Monterey Road 19/8 Lewalan Street 179 Magowar Road Unit 1,2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Dandenong South Grovedale Girraween Mitchell VIC 3175 VIC 3216 NSW 2145 ACT 2911 +61 2 9900 8400 +61 3 8564 5000 +61 3 8564 5000 +61 2 6113 8091 NATA# 1261 NATA# 1261 NATA# 1261 NATA# 1261

Site# 18217

Site# 25466

Brisbane Newcastle Murarrie Mayfield West QLD 4172 NSW 2304 T: +61 7 3902 4600 +61 2 4968 8448 NATA# 1261 NATA# 1261 Site# 20794 & 2780 Site# 25079

Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 91 05 0159 898

ABN: 47 009 120 549 Perth ProMicro 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2561

Site# 2554

Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

NZBN: 9429046024954

Auckland (Focus) Unit C1/4 Pacific Rise. 43 Detroit Drive Mount Wellington, Auckland 1061 +64 9 525 0568 IANZ# 1308

Christchurch Tauranga 1277 Cameron Road. Rolleston, Gate Pa, Christchurch 7675 Tauranga 3112 +64 3 343 5201 +64 9 525 0568 IANZ# 1290 IANZ# 1402

Address:

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Regional Geotechnical Solutions

44 Bent Street Wingham NSW 2429

RGS21005.6

Project Name: Project ID:

AQUATIC FACILITY

Site# 1254

Order No.: Report #: Phone:

Fax:

1132108 (02) 65535641

Received: Aug 26, 2024 10:30 AM Sep 2, 2024 Due: **Priority:** 5 Dav Contact Name: Grant Colliar

	Sample Detail								HOLD*	Polychlorinated Biphenyls	Metals M8	Moisture Set	Eurofins Suite B9
Sydı	ney Laboratory	NATA # 1261	Site # 18217	,			Х	Х	Х	Х	Х	Х	Х
23	BH306 0.1-0.2 bg	Aug 15, 2024		Soil	X24-Au	0066333							
24	BH306 0.4-0.5	Aug 15, 2024		Soil	X24-Au	0066334				Х		Χ	Χ
25	BH306 0.4-0.5 bg	Aug 15, 2024		Soil	X24-Au	0066335	Х						
26	BH307 0.1-0.2	Aug 15, 2024		Soil	X24-Au	0066336				Х		Х	Х
27	BH307 0.1-0.2 bg	Aug 15, 2024		Soil	X24-Au	0066337	Х						
28	BH307 0.4-0.5 bg	Aug 15, 2024		Soil	X24-Au	0066338	Х						
29	BH308 0.3-0.4	Aug 15, 2024		Soil	X24-Au	0066339				Х		Х	Х
30	BH308 0.3-0.4 bg	Aug 15, 2024		Soil	X24-Au	0066340	Χ						
31	BH308 0.6-0.7	Aug 15, 2024		Soil	X24-Au	0066341				Х		Х	Х
32	BH308 0.6-0.7 bg	Aug 15, 2024		Soil	X24-Au	0066342	Х						
33	BH309 0.2-0.3	Aug 15, 2024		Soil	X24-Au	0066343				Х		Х	Х
34	BH309 0.2-0.3 bg	Aug 15, 2024		Soil	X24-Au	0066344	Х						

ABN: 50 005 085 521

Melbourne Geelong Sydney Canberra 6 Monterey Road Dandenong South Grovedale Girraween Mitchell VIC 3175 VIC 3216 NSW 2145 ACT 2911 +61 2 9900 8400 +61 3 8564 5000 +61 3 8564 5000 NATA# 1261 NATA# 1261 NATA# 1261 NATA# 1261 Site# 1254 Site# 25403 Site# 18217

Brisbane Newcastle 19/8 Lewalan Street 179 Magowar Road Unit 1,2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West QLD 4172 NSW 2304 +61 2 4968 8448 +61 2 6113 8091 T: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 20794 & 2780 Site# 25466 Site# 25079

Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 91 05 0159 898

ABN: 47 009 120 549 Perth ProMicro 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2561

Site# 2554

Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

NZBN: 9429046024954

Auckland (Focus) Unit C1/4 Pacific Rise. 43 Detroit Drive Mount Wellington, Auckland 1061 +64 9 525 0568 IANZ# 1308

Christchurch Tauranga 1277 Cameron Road. Rolleston, Gate Pa, Christchurch 7675 Tauranga 3112 +64 3 343 5201 +64 9 525 0568 IANZ# 1290 IANZ# 1402

Address

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Regional Geotechnical Solutions

44 Bent Street Wingham NSW 2429

Project Name: Project ID:

AQUATIC FACILITY

RGS21005.6

Order No.: Report #:

Phone:

Fax:

1132108 (02) 65535641

Received: Aug 26, 2024 10:30 AM Sep 2, 2024 Due: **Priority:** 5 Dav Contact Name: Grant Colliar

	Sample Detail Sydney Laboratory - NATA # 1261 Site # 18217								Polychlorinated Biphenyls	Metals M8	Moisture Set	Eurofins Suite B9
Sydı	ey Laboratory	NATA # 1261	Site # 18217	,		Х	Х	Х	Х	Х	Х	Х
35	BH309 0.6-0.7	Aug 15, 2024		Soil	X24-Au0066345				Х		Χ	Х
36	BH309 0.6-0.7 bg	Aug 15, 2024		Soil	X24-Au0066346	Х						
37	BH309 1.4-1.5 bg	Aug 15, 2024		Soil	X24-Au0066347		х					
38	BH310 0.3-0.4	Aug 15, 2024		Soil	X24-Au0066348				Х		Х	Х
39	BH310 0.3-0.4 bg	Aug 15, 2024		Soil	X24-Au0066349	х						
40	BH310 0.9-1.0	Aug 15, 2024		Soil	X24-Au0066350				Х		Х	Х
41	BH310 0.9-1.0 bg	Aug 15, 2024		Soil	X24-Au0066351	Х						
42	BH311 0.3-0.4	Aug 15, 2024		Soil	X24-Au0066352				Х		Χ	Х
43	BH311 0.3-0.4 bg	Aug 15, 2024		Soil	X24-Au0066353	х						
44	BH311 0.8-0.9	Aug 15, 2024		Soil	X24-Au0066354				Х		Х	Х
45	BH311 0.8-0.9 bg	Aug 15, 2024		Soil	X24-Au0066355	Х						
46	BH311 1.2-13 bg	Aug 15, 2024		Soil	X24-Au0066356	Х						

Site# 25403

ABN: 50 005 085 521

Melbourne Geelong Sydney 6 Monterey Road 19/8 Lewalan Street 179 Magowar Road Unit 1,2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Dandenong South Grovedale Girraween VIC 3175 VIC 3216 NSW 2145 +61 3 8564 5000 +61 2 9900 8400 +61 3 8564 5000 NATA# 1261 NATA# 1261 NATA# 1261

Site# 18217

Canberra Mitchell ACT 2911 +61 2 6113 8091 NATA# 1261 Site# 25466

Brisbane

Murarrie

QLD 4172

NATA# 1261

Newcastle Mayfield West NSW 2304 +61 2 4968 8448 T: +61 7 3902 4600 NATA# 1261 Site# 20794 & 2780 Site# 25079

Perth Welshpool WA 6106

46-48 Banksia Road +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 91 05 0159 898

ABN: 47 009 120 549 NZBN: 9429046024954

> Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

Auckland (Focus) Unit C1/4 Pacific Rise. Mount Wellington, Auckland 1061 +64 9 525 0568 IANZ# 1308

Christchurch Tauranga 43 Detroit Drive 1277 Cameron Road. Rolleston, Gate Pa, Christchurch 7675 Tauranga 3112 +64 3 343 5201 +64 9 525 0568 IANZ# 1290 IANZ# 1402

Address

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Regional Geotechnical Solutions

44 Bent Street Wingham NSW 2429

Project Name: Project ID:

AQUATIC FACILITY RGS21005.6

Site# 1254

Order No.: Report #: Phone:

Fax:

1132108 (02) 65535641

Perth ProMicro

+61 8 6253 4444

Welshpool

WA 6106

NATA# 2561

Site# 2554

46-48 Banksia Road

Received: Aug 26, 2024 10:30 AM Sep 2, 2024 Due: **Priority:** 5 Dav Contact Name: Grant Colliar

	Sample Detail							HOLD*	Polychlorinated Biphenyls	Metals M8	Moisture Set	Eurofins Suite B9
Syd	ney Laboratory	- NATA # 1261	Site # 18217	7		Х	Х	Х	Х	Х	Х	Х
47	BH311 2.2-2.3 bg	Aug 15, 2024		Soil	X24-Au0066357		Х					
48	BH312 0.2-0.3	Aug 15, 2024		Soil	X24-Au0066358				Х		Х	Х
49	BH312 0.2-0.3 bg	Aug 15, 2024		Soil	X24-Au0066359	Х						
50	BH312 0.8-0.9	Aug 15, 2024		Soil	X24-Au0066360				Х		Х	Х
51	BH312 0.8-0.9 bg	Aug 15, 2024		Soil	X24-Au0066361	Х						
52	BH312 1.4-1.5 bg	Aug 15, 2024		Soil	X24-Au0066362	Х						
53	BH313 0.5-0.6	Aug 15, 2024		Soil	X24-Au0066363				Х		Х	Х
54	BH313 0.5-0.6 bg	Aug 15, 2024		Soil	X24-Au0066364	Х						
55	BH313 1.4-1.5 bg	Aug 15, 2024		Soil	X24-Au0066365	Х						
56	BH314 0.1-0.2	Aug 15, 2024		Soil	X24-Au0066366				Х		Х	Х
57	BH314 0.1-0.2 bg	Aug 15, 2024		Soil	X24-Au0066367	Х						
58	BH314 0.7-0.8	Aug 15, 2024		Soil	X24-Au0066368				Х		Х	Х

Site# 25403

ABN: 50 005 085 521

Melbourne Geelong Sydney Canberra 6 Monterey Road 19/8 Lewalan Street 179 Magowar Road Unit 1,2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Dandenong South Grovedale Girraween Mitchell VIC 3175 VIC 3216 NSW 2145 ACT 2911 +61 2 9900 8400 +61 3 8564 5000 +61 3 8564 5000 +61 2 6113 8091 NATA# 1261 NATA# 1261 NATA# 1261 NATA# 1261

Site# 18217

Site# 25466

Brisbane Newcastle Murarrie Mayfield West QLD 4172 NSW 2304 +61 2 4968 8448 T: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 20794 & 2780 Site# 25079

Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 91 05 0159 898

ABN: 47 009 120 549 Perth ProMicro 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2561

Site# 2554

Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

Received:

NZBN: 9429046024954

Auckland (Focus) Christchurch Unit C1/4 Pacific Rise. 43 Detroit Drive Mount Wellington, Rolleston, Auckland 1061 +64 3 343 5201 +64 9 525 0568 IANZ# 1308 IANZ# 1290

Aug 26, 2024 10:30 AM

Tauranga 1277 Cameron Road. Gate Pa, Christchurch 7675 Tauranga 3112 +64 9 525 0568 IANZ# 1402

Address

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Regional Geotechnical Solutions

44 Bent Street Wingham NSW 2429

Project Name: Project ID:

AQUATIC FACILITY

Site# 1254

RGS21005.6

Order No.: Report #: 1132108

Phone: Fax:

Sep 2, 2024 Due: (02) 65535641 **Priority:** 5 Dav Contact Name: Grant Colliar

	Sample Detail								Polychlorinated Biphenyls	Metals M8	Moisture Set	Eurofins Suite B9
Sydr	ney Laboratory	- NATA # 1261	Site # 18217	•		Х	Х	Х	Х	Х	Χ	Х
59	BH314 0.7-0.8 bg	Aug 15, 2024		Soil	X24-Au0066369	х						
60	BH314 1.2-1.3 bg	Aug 15, 2024		Soil	X24-Au0066370		х					
61	BH315 0.5-0.6	Aug 15, 2024		Soil	X24-Au0066371				Х		Х	Х
62	BH315 0.5-0.6 bg	Aug 15, 2024		Soil	X24-Au0066372	х						
63	BH315 1.5-1.6	Aug 15, 2024		Soil	X24-Au0066373				Х		Х	Х
64	BH315 1.5-1.6 bg	Aug 15, 2024		Soil	X24-Au0066374		Х					
65	BH316 0.3-0.4	Aug 16, 2024		Soil	X24-Au0066375				Х		Χ	Х
66	BH316 0.3-0.4 bg	Aug 16, 2024		Soil	X24-Au0066376	х						
67	BH316 1.3-1.4 Bg	Aug 16, 2024		Soil	X24-Au0066377	х						
68	BH317 0.2-0.3	Aug 16, 2024		Soil	X24-Au0066378				Х		Х	Х
69	BH317 0.2-0.3 bg	Aug 16, 2024		Soil	X24-Au0066379	Х						
70	BH317 0.6-0.7	Aug 16, 2024		Soil	X24-Au0066380				Х		Χ	Χ

ABN: 50 005 085 521

Melbourne Geelong Sydney 6 Monterey Road Dandenong South Grovedale Girraween VIC 3175 VIC 3216 NSW 2145 +61 3 8564 5000 +61 2 9900 8400 +61 3 8564 5000 NATA# 1261 NATA# 1261 NATA# 1261 Site# 1254 Site# 25403 Site# 18217

Brisbane Newcastle 19/8 Lewalan Street 179 Magowar Road Unit 1,2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West QLD 4172 NSW 2304 +61 2 4968 8448 +61 2 6113 8091 T: +61 7 3902 4600 NATA# 1261 NATA# 1261 NATA# 1261 Site# 20794 & 2780 Site# 25466 Site# 25079

Canberra

Mitchell

ACT 2911

46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377

ABN: 91 05 0159 898

ABN: 47 009 120 549 NZBN: 9429046024954

> Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

Auckland (Focus) Christchurch Unit C1/4 Pacific Rise. 43 Detroit Drive Mount Wellington, Rolleston, Auckland 1061 +64 3 343 5201 +64 9 525 0568 IANZ# 1308 IANZ# 1290

Tauranga 1277 Cameron Road. Gate Pa, Christchurch 7675 Tauranga 3112 +64 9 525 0568 IANZ# 1402

Address

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Regional Geotechnical Solutions

44 Bent Street

Wingham NSW 2429

Project Name: Project ID:

AQUATIC FACILITY RGS21005.6

Order No.: Report #: Phone:

Fax:

Site# 2370

Perth

1132108

(02) 65535641

Perth ProMicro

+61 8 6253 4444

Welshpool

WA 6106

NATA# 2561

Site# 2554

46-48 Banksia Road

Received: Aug 26, 2024 10:30 AM Sep 2, 2024 Due:

Priority: 5 Dav Contact Name: Grant Colliar

		Sa	mple Detail			Asbestos - AS4964	CANCELLED*	HOLD*	Polychlorinated Biphenyls	Metals M8	Moisture Set	Eurofins Suite B9
Sydı	ney Laboratory	- NATA # 1261	Site # 18217	,		Х	Х	Х	Х	Х	Х	Х
71	BH317 0.6-0.7 bg	Aug 16, 2024		Soil	X24-Au0066381	Х						
72	BH317 1-1 bg	Aug 16, 2024		Soil	X24-Au0066382		Х					
73	BH318 0.3-0.4	Aug 16, 2024		Soil	X24-Au0066383				Х		Х	Х
74	BH318 0.3-0.4 bg	Aug 16, 2024		Soil	X24-Au0066384	Х						
75	BH318 1.2-1.3 bg	Aug 16, 2024		Soil	X24-Au0066385		х					
76	BH319 0.2-0.3	Aug 16, 2024		Soil	X24-Au0066386				Х		Х	Х
77	BH319 0.2-0.3 bg	Aug 16, 2024		Soil	X24-Au0066387	Х						
78	BH319 0.7-0.8	Aug 16, 2024		Soil	X24-Au0066388				Х		Х	Х
79	BH319 0.7-0.8 bg	Aug 16, 2024		Soil	X24-Au0066389		Х					
80	BH320 0.4-0.5	Aug 16, 2024		Soil	X24-Au0066390				Х		Х	Х
81	BH320 0.4-0.5 bg	Aug 16, 2024		Soil	X24-Au0066391	Х						
82	BH320 1-1.1 bg	Aug 16, 2024		Soil	X24-Au0066392	х						

Site# 25403

ABN: 50 005 085 521

Melbourne Geelong Sydney Canberra 6 Monterey Road 19/8 Lewalan Street 179 Magowar Road Unit 1,2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Dandenong South Grovedale Girraween Mitchell VIC 3175 VIC 3216 NSW 2145 ACT 2911 +61 2 9900 8400 +61 3 8564 5000 +61 3 8564 5000 +61 2 6113 8091 NATA# 1261 NATA# 1261 NATA# 1261 NATA# 1261

Site# 18217

Site# 25466

Brisbane Newcastle Murarrie Mayfield West QLD 4172 NSW 2304 +61 2 4968 8448 T: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 20794 & 2780 Site# 25079

Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370

Fax:

ABN: 47 009 120 549 Perth ProMicro 46-48 Banksia Road Welshpool WA 6106

+61 8 6253 4444

NATA# 2561

Site# 2554

Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

NZBN: 9429046024954

Auckland (Focus) Unit C1/4 Pacific Rise. 43 Detroit Drive Mount Wellington, Auckland 1061 +64 9 525 0568 IANZ# 1308

Christchurch Tauranga 1277 Cameron Road. Rolleston, Gate Pa, Christchurch 7675 Tauranga 3112 +64 3 343 5201 +64 9 525 0568 IANZ# 1290 IANZ# 1402

Address

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Regional Geotechnical Solutions

44 Bent Street Wingham NSW 2429

Project Name: Project ID:

AQUATIC FACILITY RGS21005.6

Site# 1254

Order No.: Report #: Phone:

ABN: 91 05 0159 898

1132108 (02) 65535641

Received: Aug 26, 2024 10:30 AM Sep 2, 2024 Due: **Priority:** 5 Dav Contact Name: Grant Colliar

		Sa	mple Detail			Asbestos - AS4964	CANCELLED*	HOLD*	Polychlorinated Biphenyls	Metals M8	Moisture Set	Eurofins Suite B9
Sydr	ney Laboratory	- NATA # 1261	Site # 18217	,		Х	Х	Х	Х	Х	Х	Х
83	BH321 0.1-0.2	Aug 16, 2024		Soil	X24-Au0066393				Х		Х	Х
84	BH321 0.1-0.2 bg	Aug 16, 2024		Soil	X24-Au0066394	Х						
85	BH321 0.5-0.6 bg	Aug 16, 2024		Soil	X24-Au0066395	Х						
86	BH321 1.2-1.3	Aug 16, 2024		Soil	X24-Au0066396				Х		Χ	Х
87	BH321 1.2-1.3 bg	Aug 16, 2024		Soil	X24-Au0066397		х					
88	BH322 0.3-0.4	Aug 16, 2024		Soil	X24-Au0066398				Х		Х	Х
89	BH322 0.3-0.4 bg	Aug 16, 2024		Soil	X24-Au0066399	Х						
90	BH322 1.5-1.6 bg	Aug 16, 2024		Soil	X24-Au0066400	Х						
91	BH323 0.2- 0.25	Aug 16, 2024		Soil	X24-Au0066401				Х		Х	х
92	BH323 0.2- 0.25 bg	Aug 16, 2024		Soil	X24-Au0066402	Х						
93	BH323 0.3-0.4	Aug 16, 2024		Soil	X24-Au0066403				Х		Х	Х
94	BH323 0.3-0.4	Aug 16, 2024		Soil	X24-Au0066404	Х						

Site# 25403

ABN: 50 005 085 521

Melbourne Geelong Sydney Canberra 6 Monterey Road 19/8 Lewalan Street 179 Magowar Road Unit 1.2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Dandenong South Grovedale Girraween Mitchell VIC 3175 VIC 3216 NSW 2145 ACT 2911 +61 3 8564 5000 +61 2 9900 8400 +61 3 8564 5000 +61 2 6113 8091 NATA# 1261 NATA# 1261 NATA# 1261 NATA# 1261

Site# 18217

Site# 25466

Brisbane Newcastle Murarrie Mayfield West QLD 4172 NSW 2304 T: +61 7 3902 4600 +61 2 4968 8448 NATA# 1261 NATA# 1261 Site# 20794 & 2780 Site# 25079

Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 91 05 0159 898

ABN: 47 009 120 549 Perth ProMicro 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2561

Site# 2554

Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

NZBN: 9429046024954

Auckland (Focus) Christchurch Unit C1/4 Pacific Rise. 43 Detroit Drive Mount Wellington, Rolleston, Auckland 1061 +64 3 343 5201 +64 9 525 0568 IANZ# 1308 IANZ# 1290

Tauranga 1277 Cameron Road. Gate Pa, Christchurch 7675 Tauranga 3112 +64 9 525 0568 IANZ# 1402

Address

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Regional Geotechnical Solutions

Project Name: Project ID:

44 Bent Street

Wingham NSW 2429

AQUATIC FACILITY RGS21005.6

Site# 1254

Order No.: Report #:

1132108 (02) 65535641

Phone: Fax:

Received: Aug 26, 2024 10:30 AM Sep 2, 2024 Due:

Priority: 5 Dav Contact Name: Grant Colliar

		Sa	mple Detail			Asbestos - AS4964	CANCELLED*	HOLD*	Polychlorinated Biphenyls	Metals M8	Moisture Set	Eurofins Suite B9
Sydı	ney Laboratory	- NATA # 1261	Site # 18217	,		Х	Х	Х	Х	Х	Х	Х
	bg											
95	BH324 0.7-0.8	Aug 16, 2024		Soil	X24-Au0066405				Х		Χ	Х
96	BH324 0.7-0.8 bg	Aug 16, 2024		Soil	X24-Au0066406	Х						
97	BH325 0.5-0.6	Aug 16, 2024		Soil	X24-Au0066407				Х		Χ	Х
98	BH325 0.5-0.6 bg	Aug 16, 2024		Soil	X24-Au0066408	Х						
99	BH325 2-2.1	Aug 16, 2024		Soil	X24-Au0066409				Х		Х	Х
100	BH325 2-2.1 bg	Aug 16, 2024		Soil	X24-Au0066410	Х						
101	BH326 0.2-0.3	Aug 16, 2024		Soil	X24-Au0066411				Х		Х	Х
102	BH326 0.2-0.3 bg	Aug 16, 2024		Soil	X24-Au0066412	Х						
103	BH326 0.9-1	Aug 16, 2024		Soil	X24-Au0066413				Х		Χ	Х
104	BH326 0.9-1 bg	Aug 16, 2024		Soil	X24-Au0066414	Х						
105	BH326 2.5-2.6 bg	Aug 16, 2024		Soil	X24-Au0066415		Х					
106	BH327 0.6-0.7	Aug 16, 2024		Soil	X24-Au0066416				Х		Χ	Х

Site# 25403

ABN: 50 005 085 521

Melbourne Geelong Sydney Canberra 6 Monterey Road Dandenong South Grovedale Girraween Mitchell VIC 3175 VIC 3216 NSW 2145 ACT 2911 +61 2 9900 8400 +61 3 8564 5000 +61 3 8564 5000 NATA# 1261 NATA# 1261 NATA# 1261 NATA# 1261

Site# 18217

Site# 25466

Brisbane Newcastle 19/8 Lewalan Street 179 Magowar Road Unit 1,2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West QLD 4172 NSW 2304 +61 2 4968 8448 +61 2 6113 8091 T: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 20794 & 2780 Site# 25079

Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 91 05 0159 898

ABN: 47 009 120 549 Perth ProMicro 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2561

Site# 2554

Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551

IANZ# 1327

NZBN: 9429046024954

Auckland (Focus) Unit C1/4 Pacific Rise. 43 Detroit Drive Mount Wellington, Auckland 1061 +64 9 525 0568 IANZ# 1308

Christchurch Tauranga 1277 Cameron Road. Rolleston, Gate Pa, Christchurch 7675 Tauranga 3112 +64 3 343 5201 +64 9 525 0568 IANZ# 1290 IANZ# 1402

Address

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Regional Geotechnical Solutions

44 Bent Street Wingham NSW 2429

Project Name: Project ID:

AQUATIC FACILITY RGS21005.6

Site# 1254

Order No.: Report #: Phone:

Fax:

1132108 (02) 65535641

Received: Aug 26, 2024 10:30 AM Sep 2, 2024 Due: **Priority:** 5 Dav Contact Name: Grant Colliar

		Sa	mple Detail			Asbestos - AS4964	CANCELLED*	HOLD*	Polychlorinated Biphenyls	Metals M8	Moisture Set	Eurofins Suite B9
Sydr	ey Laboratory	- NATA # 1261	Site # 18217	•		Χ	Х	Х	Х	Χ	Χ	Х
107	BH327 0.6-0.7 bg	Aug 16, 2024		Soil	X24-Au0066417	Х						
108	BH327 1.2-1.3	Aug 16, 2024		Soil	X24-Au0066418				Х		Χ	Χ
109	BH327 1.2-1.3 bg	Aug 16, 2024		Soil	X24-Au0066419	Х						
110	BH327 2.8-2.9 bg	Aug 16, 2024		Soil	X24-Au0066420	Х						
111	TP1 0-0.1	Aug 16, 2024		Soil	X24-Au0066421				Х		Х	Х
112	TP1 0.5-0.6	Aug 16, 2024		Soil	X24-Au0066422				Х		Х	Х
113	TP1 0.9-1.0	Aug 16, 2024		Soil	X24-Au0066423		Х					
114	TP1 1.5 bg	Aug 16, 2024		Soil	X24-Au0066424	Х						
115	TP2 0.1-0.1	Aug 16, 2024		Soil	X24-Au0066425				Х		Χ	Х
116	TP2 0.2-0.3	Aug 16, 2024		Soil	X24-Au0066426				Х		Χ	Х
117	TP3 0-0.1	Aug 16, 2024		Soil	X24-Au0066427				Х		Х	Х
118	TP3 0.4-0.5	Aug 16, 2024		Soil	X24-Au0066428				Х		Х	Х
119	TP4 0-0.1	Aug 16, 2024		Soil	X24-Au0066429				Х		Х	Х
120	TP6 0-0.1	Aug 16, 2024		Soil	X24-Au0066430				Х		Х	Х
121	TP6 0.4-0.5	Aug 16, 2024		Soil	X24-Au0066431				Х		Χ	Χ

ABN: 50 005 085 521

Melbourne Geelong Sydney 6 Monterey Road Dandenong South Grovedale Girraween VIC 3175 VIC 3216 NSW 2145 +61 2 9900 8400 +61 3 8564 5000 +61 3 8564 5000 NATA# 1261 NATA# 1261 NATA# 1261

Site# 18217

Site# 25403

Brisbane Newcastle 19/8 Lewalan Street 179 Magowar Road Unit 1,2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Murarrie Mayfield West QLD 4172 NSW 2304 +61 2 4968 8448 +61 2 6113 8091 T: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 20794 & 2780 Site# 25079

Canberra

Mitchell

ACT 2911

NATA# 1261

Site# 25466

Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 91 05 0159 898

ABN: 47 009 120 549

Perth ProMicro

+61 8 6253 4444

Welshpool

WA 6106

NATA# 2561

Site# 2554

46-48 Banksia Road

NZBN: 9429046024954 Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

Auckland (Focus) Unit C1/4 Pacific Rise. 43 Detroit Drive Mount Wellington, Auckland 1061 +64 9 525 0568 IANZ# 1308

Christchurch Tauranga 1277 Cameron Road. Rolleston, Gate Pa, Christchurch 7675 Tauranga 3112 +64 3 343 5201 +64 9 525 0568 IANZ# 1290 IANZ# 1402

Address

email: EnviroSales@eurofins.com

web: www.eurofins.com.au

Company Name: Regional Geotechnical Solutions

44 Bent Street Wingham NSW 2429

Project Name: Project ID:

AQUATIC FACILITY

Site# 1254

RGS21005.6

Order No.: Report #: Phone:

Fax:

1132108 (02) 65535641

Received: Aug 26, 2024 10:30 AM Sep 2, 2024 Due:

Priority: 5 Dav Contact Name: Grant Colliar

		Sa	mple Detail			Asbestos - AS4964	CANCELLED*	HOLD*	Polychlorinated Biphenyls	Metals M8	Moisture Set	Eurofins Suite B9
Sydr	ey Laboratory	NATA # 1261	Site # 18217	•	_	Х	Х	Х	Х	Χ	Х	Х
122	TP6 0.9-1 bg	Aug 16, 2024		Soil	X24-Au0066432	Х						
123	TP7 0.5-0.6	Aug 16, 2024		Soil	X24-Au0066433				Х		Χ	Х
124	TP8 0.3-0.4	Aug 16, 2024		Soil	X24-Au0066434				Χ		Χ	Х
125	TP8 0.7-0.9 bg	Aug 16, 2024		Soil	X24-Au0066435	Х						
126	TP8 0.9-1.2 bg	Aug 16, 2024		Soil	X24-Au0066436	Χ						
127	TP9 0.2-0.3	Aug 16, 2024		Soil	X24-Au0066437				Χ		Χ	Х
128	TP9 0.7-0.8	Aug 16, 2024		Soil	X24-Au0066438				Χ		Χ	Х
129	TP10 0.3-0.4	Aug 16, 2024		Soil	X24-Au0066439				Χ		Χ	Х
130	TP10 1.5-1.8 bg	Aug 16, 2024		Soil	X24-Au0066440	Х						
131	TP10 1.8-2 bg	Aug 16, 2024		Soil	X24-Au0066441	Х						
132	D1 0-0.1	Aug 16, 2024		Soil	X24-Au0066442					Χ	Χ	
133	D2	Aug 16, 2024		Soil	X24-Au0066443					Χ	Χ	
134	D3	Aug 16, 2024		Soil	X24-Au0066444					Χ	Χ	
135	D4	Aug 16, 2024		Soil	X24-Au0066445					Χ	Χ	
136	D5	Aug 16, 2024		Soil	X24-Au0066446					Х	Х	
137	D6	Aug 16, 2024		Soil	X24-Au0066447					Χ	Χ	

email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Geelong Sydney Canberra 6 Monterey Road 19/8 Lewalan Street 179 Magowar Road Unit 1,2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Dandenong South Grovedale Girraween Mitchell VIC 3175 VIC 3216 NSW 2145 ACT 2911 +61 3 8564 5000 +61 2 9900 8400 +61 3 8564 5000 +61 2 6113 8091 NATA# 1261 NATA# 1261 NATA# 1261 NATA# 1261 Site# 1254 Site# 25403 Site# 18217 Site# 25466

Brisbane Newcastle Murarrie Mayfield West QLD 4172 NSW 2304 +61 2 4968 8448 T: +61 7 3902 4600 NATA# 1261 NATA# 1261 Site# 20794 & 2780 Site# 25079

Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 47 009 120 549 Perth ProMicro 46-48 Banksia Road Welshpool

WA 6106

NATA# 2561

Site# 2554

+61 8 6253 4444

Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

NZBN: 9429046024954

Auckland (Focus) Unit C1/4 Pacific Rise. Mount Wellington, Auckland 1061 +64 9 525 0568 IANZ# 1308

Christchurch Tauranga 43 Detroit Drive 1277 Cameron Road. Rolleston, Gate Pa, Christchurch 7675 Tauranga 3112 +64 3 343 5201 +64 9 525 0568 IANZ# 1290 IANZ# 1402

Address

web: www.eurofins.com.au

Company Name: Regional Geotechnical Solutions

44 Bent Street Wingham NSW 2429

Project Name: Project ID:

AQUATIC FACILITY RGS21005.6

Order No.: Report #: Phone:

Fax:

ABN: 91 05 0159 898

1132108 (02) 65535641

Received: Aug 26, 2024 10:30 AM Sep 2, 2024 Due: **Priority:** 5 Dav Contact Name: Grant Colliar

		Sa	mple Detail			Asbestos - AS4964	CANCELLED*	HOLD*	Polychlorinated Biphenyls	Metals M8	Moisture Set	Eurofins Suite B9
Sydr	ey Laboratory	- NATA # 1261	Site # 18217			Χ	Х	Χ	Χ	Χ	Х	Х
138	TP5 0-0.1	Aug 15, 2024		Soil	X24-Au0066668			Χ				
139	TP5 0.5-0.6	Aug 15, 2024		Soil	X24-Au0066669			Χ				
140	TP7 1-1.1	Aug 15, 2024		Soil	X24-Au0066670			Х				
141	TP10 1-1.2	Aug 15, 2024		Soil	X24-Au0066671			Х				
Test	Counts					57	14	4	60	6	66	60

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follow guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013. They are included in this QC report where applicable. Additional QC data may be available on request
- 2. Unless otherwise stated, all soil/sediment/solid results are reported on a dry weight basis.
- 3. Unless otherwise stated, all biota/food results are reported on a wet weight basis on the edible portion.
- 4. For CEC results where the sample's origin is unknown or environmentally contaminated, the results should be used advisedly.
- Actual LORs are matrix dependent. Quoted LORs may be raised where sample extracts are diluted due to interferences
- Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds where annotated.
- 7. SVOC analysis on waters is performed on homogenised, unfiltered samples unless noted otherwise.
- 8. Samples were analysed on an 'as received' basis.
- 9. Information identified in this report with blue colour indicates data provided by customers that may have an impact on the results.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to the 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours before sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and despite any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the sampling date: therefore, compliance with these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether, the holding time is seven days; however, for all other VOCs, such as BTEX or C6-10 TRH, the holding time is 14 days

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ppm: parts per million μg/L: micrograms per litre ppb: parts per billion %: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Colour: Pt-Co Units (CU) CFU: Colony Forming Unit

Terms

APHA American Public Health Association CEC Cation Exchange Capacity COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where moisture has been determined on a solid sample, the result is expressed on a dry weight basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting.

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank In the case of solid samples, these are performed on laboratory-certified clean sands and in the case of water samples, these are performed on de-ionised water NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC represents the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis SPIKE Addition of the analyte to the sample and reported as percentage recovery

SRA Sample Receipt Advice

The addition of a similar compound to the analyte target is reported as percentage recovery. See below for acceptance criteria Surr - Surrogate

Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment; however, free tributyltin was measured, and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits. TRTO

TCI P Toxicity Characteristic Leaching Procedure TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 6.0

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should only be used as a guide and may be different when site-specific Sampling Analysis and Quality Plan (SAQP) have been implemented.

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is ≤30%; however, the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50% Results >20 times the LOR: RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range, not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%, VOC recoveries 50 - 150%

PFAS field samples containing surrogate recoveries above the QC limit designated in QSM 6.0, where no positive PFAS results have been reported or reviewed, and no data was affected.

QC Data General Comments

- 1. Where a result is reported as less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown are not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery, the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results, a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data; thus, it is possible to have two sets of data

Report Number: 1132108-S

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-HCH	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	0.05	0.05	Pass	
b-HCH	mg/kg	< 0.05	0.05	Pass	
d-HCH	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 0.5	0.5	Pass	
Method Blank				1 0.00	
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	
Total PCB*	mg/kg	< 0.1	0.1	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank	l Hig/kg		1 0.5	1 1 000	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-HCH	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-HCH	mg/kg	< 0.05	0.05	Pass	
d-HCH	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	
Total PCB*	mg/kg	< 0.1	0.1	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	·				
TRH C6-C9	mg/kg	< 20	20	Pass	
Method Blank					
BTEX	<u> </u>				
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	3				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	3				
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	<u> </u>
Method Blank					1

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank					
Metals M8					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
Method Blank	1gg	1		1 2 2 2	
Total Recoverable Hydrocarbons - 1999 NEPM Fra	ctions				
TRH C6-C9	mg/kg	< 20	20	Pass	
Method Blank	199	1		. 300	
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.1	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank	IIIg/kg	< 0.5	0.3	Fass	
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions	Τ			
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
Method Blank	IIIg/kg	<u> </u>		Fass	
		T		l	
Polycyclic Aromatic Hydrocarbons	mg/kg	< 0.5	0.5	Pass	
Acenaphthulana		1			
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organochlorine Pesticides	n	1 0.1		_	
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
а-НСН	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
b-HCH	mg/kg	< 0.05	0.05	Pass	
d-HCH	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-HCH (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	
Total PCB*	mg/kg	< 0.1	0.1	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-HCH	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-HCH	mg/kg	< 0.05	0.05	Pass	
d-HCH	mg/kg	< 0.05	0.05	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	

Endosulfan I Endosulfan II Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-HCH (Lindane) Heptachlor Heptachlor epoxide Hexachlorobenzene Methoxychlor	mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	Pass Pass Pass Pass Pass Pass Pass Pass	
Endosulfan sulphate Endrin Endrin aldehyde Endrin ketone g-HCH (Lindane) Heptachlor Heptachlor epoxide Hexachlorobenzene Methoxychlor	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	0.05 0.05 0.05 0.05 0.05 0.05 0.05	Pass Pass Pass Pass Pass Pass Pass	
Endrin Endrin aldehyde Endrin ketone g-HCH (Lindane) Heptachlor Heptachlor epoxide Hexachlorobenzene Methoxychlor	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	0.05 0.05 0.05 0.05 0.05 0.05	Pass Pass Pass Pass Pass	
Endrin aldehyde Endrin ketone g-HCH (Lindane) Heptachlor Heptachlor epoxide Hexachlorobenzene Methoxychlor	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	0.05 0.05 0.05 0.05 0.05	Pass Pass Pass Pass	
Endrin ketone g-HCH (Lindane) Heptachlor Heptachlor epoxide Hexachlorobenzene Methoxychlor	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	0.05 0.05 0.05 0.05	Pass Pass Pass	
g-HCH (Lindane) Heptachlor Heptachlor epoxide Hexachlorobenzene Methoxychlor	mg/kg mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05	0.05 0.05 0.05	Pass Pass	
Heptachlor Heptachlor epoxide Hexachlorobenzene Methoxychlor	mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05	0.05 0.05	Pass	
Heptachlor epoxide Hexachlorobenzene Methoxychlor	mg/kg mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05 < 0.05	0.05		
Heptachlor epoxide Hexachlorobenzene Methoxychlor	mg/kg mg/kg mg/kg	< 0.05 < 0.05 < 0.05		Door	1
Hexachlorobenzene Methoxychlor	mg/kg mg/kg	< 0.05 < 0.05		l rass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
			0.05	Pass	
Toxaphene	1	< 0.5	0.5	Pass	
lethod Blank				1 3.00	
Polychlorinated Biphenyls					
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	
Total PCB*	mg/kg	< 0.1	0.1	Pass	
lethod Blank	i iiig/kg	V 0.1	0.1	1 455	
Metals M8					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
lethod Blank	IIIg/kg		J J	1 033	
Metals M8					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel		< 5	5	Pass	
	mg/kg		5		
Zinc	mg/kg	< 5] 5	Pass	
Method Blank					
Metals M8	m = //	12		Desa	
Arsenic Cadmium	mg/kg	< 2	0.4	Pass	
	mg/kg	< 0.4		Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
CS - % Recovery					

Test	Units	Result 1	Accepta Limits	nce Pass Limits	Qualifying Code
Aroclor-1016	%	75	70-130	Pass	
LCS - % Recovery					
Organochlorine Pesticides					
4.4'-DDD	%	94	70-130	Pass	
4.4'-DDE	%	84	70-130	Pass	
4.4'-DDT	%	126	70-130	Pass	
a-HCH	%	71	70-130) Pass	
Aldrin	%	84	70-130) Pass	
b-HCH	%	87	70-130) Pass	
d-HCH	%	88	70-130) Pass	
Dieldrin	%	84	70-130) Pass	
Endosulfan I	%	81	70-130) Pass	
Endosulfan II	%	88	70-130		
Endosulfan sulphate	%	91	70-130		
Endrin	%	112	70-130) Pass	
Endrin aldehyde	%	99	70-130		
g-HCH (Lindane)	%	86	70-130		
Heptachlor	%	82	70-130) Pass	
Hexachlorobenzene	%	70	70-130) Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	78	70-130		
Acenaphthylene	%	77	70-130) Pass	
Anthracene	%	73	70-130		
Benzo(a)pyrene	%	71	70-130		
Benzo(g.h.i)perylene	%	71	70-130		
Chrysene	%	82	70-130		
Dibenz(a.h)anthracene	%	70	70-130		
Fluoranthene	%	72	70-130		
Fluorene	%	76	70-130		
Indeno(1.2.3-cd)pyrene	%	76	70-130		
Naphthalene	%	78	70-130		
Pyrene	%	71	70-130) Pass	
LCS - % Recovery					
Organochlorine Pesticides					
Chlordanes - Total	%	77	70-130		
4.4'-DDD	%	73	70-130		
4.4'-DDE	%	78	70-130	1	
4.4'-DDT	%	83	70-130		
a-HCH	%	77	70-130		
Aldrin	%	75	70-130		
b-HCH	%	73	70-130		
d-HCH	%	70	70-130		
Dieldrin	%	76	70-130		
Endosulfan I	%	79	70-130		
Endosulfan II	%	77	70-130		
Endosulfan sulphate	%	76	70-130		
Endrin	%	74	70-130		
Endrin aldehyde	%	73	70-130		
Endrin ketone	%	84	70-130		
g-HCH (Lindane)	%	75	70-130		
Heptachlor	%	74	70-130		
Heptachlor epoxide	%	75	70-130		
Hexachlorobenzene	%	78	70-130) Pass	

Test	Units	Result 1	Acceptan Limits	e Pass	Qualifying Code
LCS - % Recovery				2	5545
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	79	70-130	Pass	
LCS - % Recovery			1	1 0.00	
BTEX		T			
Benzene	%	84	70-130	Pass	
Toluene	%	87	70-130	Pass	
Ethylbenzene	%	94	70-130	Pass	
m&p-Xylenes	%	76	70-130	Pass	
o-Xylene	%	93	70-130	Pass	
•		1			
Xylenes - Total*	%	81	70-130	Pass	
LCS - % Recovery		Т			-
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	1 01				
Naphthalene	%	92	70-130	Pass	
TRH C6-C10	%	78	70-130	Pass	-
LCS - % Recovery		T T			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C10-C14	%	101	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
TRH >C10-C16	%	102	70-130	Pass	
LCS - % Recovery					
Metals M8					
Arsenic	%	86	80-120	Pass	
Cadmium	%	84	80-120	Pass	
Chromium	%	88	80-120	Pass	
Copper	%	86	80-120	Pass	
Lead	%	87	80-120	Pass	
Mercury	%	86	80-120	Pass	
Nickel	%	87	80-120	Pass	
Zinc	%	86	80-120	Pass	
	70	00	80-120	Fd55	
LCS - % Recovery		Т			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	0/	105	70.400		
TRH C6-C9	%	125	70-130	Pass	
LCS - % Recovery		T T			
BTEX					-
Benzene	%	97	70-130	Pass	
Toluene	%	126	70-130	Pass	
Ethylbenzene	%	110	70-130	Pass	
m&p-Xylenes	%	96	70-130	Pass	
o-Xylene	%	112	70-130	Pass	
Xylenes - Total*	%	101	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	104	70-130	Pass	
TRH C6-C10	%	126	70-130	Pass	
LCS - % Recovery			, , , , , , ,		
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	77	70-130	Pass	
Acenaphthylene	%	77	70-130	Pass	
Anthracene	%	80	70-130	Pass	
		1			
Benzo(g.h.i)perylene	%	71	70-130	Pass	
Benzo(k)fluoranthene	%	83	70-130	Pass	
Chrysene	%	77	70-130	Pass	L

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Fluoranthene	%	73	70-130	Pass	
Fluorene	%	75	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	71	70-130	Pass	
Naphthalene	%	78	70-130	Pass	
Pyrene	%	71	70-130	Pass	
LCS - % Recovery					
Organochlorine Pesticides					
Chlordanes - Total	%	75	70-130	Pass	
4.4'-DDE	%	77	70-130	Pass	
4.4'-DDT	%	88	70-130	Pass	
a-HCH	%	76	70-130	Pass	
Aldrin	%	72	70-130	Pass	
b-HCH	%	73	70-130	Pass	
d-HCH	%	72	70-130	Pass	<u> </u>
Dieldrin	%	78	70-130	Pass	
Endosulfan I	%	79	70-130	Pass	
Endosulfan II	%	76	70-130	Pass	
Endosulfan sulphate	%	77	70-130	Pass	-
Endrin	%	82	70-130	Pass	
Endrin aldehyde	%	74	70-130	Pass	
Endrin ketone	%	84	70-130	Pass	
g-HCH (Lindane)	%	77	70-130	Pass	
Heptachlor	%	74	70-130	Pass	
Heptachlor epoxide	%	73	70-130	Pass	
Hexachlorobenzene	%	76	70-130	Pass	
Methoxychlor	%	74	70-130	Pass	
LCS - % Recovery Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	82	70-130	Pass	
Acenaphthylene	%	83	70-130	Pass	
Anthracene	%	82	70-130	Pass	
Benz(a)anthracene	%	71	70-130	Pass	
Benzo(a)pyrene	%	80	70-130	Pass	
Benzo(b&j)fluoranthene	%	78	70-130	Pass	
· •	%	79	70-130	Pass	
Benzo(k)fluoranthene					
Chrysene	%	93	70-130	Pass	
Fluoranthene	%	80	70-130	Pass	
Fluorene	%	83	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	70	70-130	Pass	
Naphthalene	%	84	70-130	Pass	-
Phenanthrene	%	75	70-130	Pass	
Pyrene	%	81	70-130	Pass	
LCS - % Recovery					
Organochlorine Pesticides Chlordanes - Total	%	06	70.420	Door	
		96	70-130	Pass	
4.4'-DDD	%	77	70-130	Pass	
4.4'-DDE	%	82	70-130	Pass	
4.4'-DDT	%	73	70-130	Pass	
a-HCH	%	88	70-130	Pass	-
Aldrin	%	79	70-130	Pass	
b-HCH	%	83	70-130	Pass	
d-HCH	%	91	70-130	Pass	
Dieldrin	%	92	70-130	Pass	
Endosulfan I	%	86	70-130	Pass	<u> </u>

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan II			%	84	70-130	Pass	
Endosulfan sulphate			%	83	70-130	Pass	
Endrin			%	82	70-130	Pass	
Endrin ketone			%	83	70-130	Pass	
g-HCH (Lindane)			%	90	70-130	Pass	
Heptachlor			%	83	70-130	Pass	
Heptachlor epoxide			%	89	70-130	Pass	
Hexachlorobenzene			%	92	70-130	Pass	
LCS - % Recovery						1 0.00	
Polychlorinated Biphenyls							
Aroclor-1260			%	77	70-130	Pass	
LCS - % Recovery			70		70 100	1 455	
Metals M8							
Arsenic			%	99	80-120	Pass	
				98			
Chromium			%		80-120	Pass	
Conner			%	105	80-120	Pass	
Copper			%	103	80-120	Pass	
Lead			%	102	80-120	Pass	
Mercury			%	105	80-120	Pass	
Nickel			%	104	80-120	Pass	
Zinc			%	103	80-120	Pass	
LCS - % Recovery				T	T		
Metals M8							
Arsenic			%	103	80-120	Pass	
Cadmium			%	106	80-120	Pass	
Chromium			%	106	80-120	Pass	
Copper			%	108	80-120	Pass	
Lead			%	109	80-120	Pass	
Mercury			%	117	80-120	Pass	
Nickel			%	106	80-120	Pass	
Zinc			%	106	80-120	Pass	
LCS - % Recovery				•			
Metals M8							
Arsenic			%	97	80-120	Pass	
Cadmium			%	101	80-120	Pass	
Chromium			%	100	80-120	Pass	
Copper			// 0	100	80-120	Pass	
Lead			// //////////////////////////////////	100	80-120	Pass	
Mercury			//	108	80-120	Pass	
,							
Nickel			%	100	80-120	Pass	
Zinc			%	99	80-120	Pass	0
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery		,			 		32
Organochlorine Pesticides				Result 1			
Chlordanes - Total	S24-Au0065744	NCP	%	97	70-130	Pass	
4.4'-DDD	S24-Au0065744	NCP	// //////////////////////////////////	80	70-130	Pass	
4.4'-DDE	S24-Au0065744	NCP	<u> </u>	119	70-130	Pass	
4.4'-DDE	S24-Au0065744	NCP	%	80	70-130	Pass	
	S24-Au0065744 S24-Au0065744	NCP	<u>%</u> %	 			
a-HCH	_	† 		101	70-130	Pass	
Aldrin	S24-Au0065744	NCP	%	86	70-130	Pass	
b-HCH	S24-Au0065744	NCP	%	98	70-130	Pass	
d-HCH	S24-Au0065744	NCP	%	99	70-130	Pass	
Dieldrin	S24-Au0065744	NCP	% %	92	70-130	Pass	
Endosulfan I				84	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan II	S24-Se0002542	NCP	%	98	70-130	Pass	
Endosulfan sulphate	S24-Au0065744	NCP	%	109	70-130	Pass	
Endrin	S24-Se0002542	NCP	%	126	70-130	Pass	
Endrin ketone	S24-Au0065744	NCP	%	119	70-130	Pass	
g-HCH (Lindane)	S24-Au0065744	NCP	%	109	70-130	Pass	
Heptachlor	S24-Au0065744	NCP	%	92	70-130	Pass	
Heptachlor epoxide	S24-Au0065744	NCP	%	111	70-130	Pass	
Hexachlorobenzene	S24-Au0065744	NCP	%	111	70-130	Pass	
Spike - % Recovery							
Polychlorinated Biphenyls				Result 1			
Aroclor-1016	S24-Au0065744	NCP	%	71	70-130	Pass	
Aroclor-1260	S24-Au0065744	NCP	%	95	70-130	Pass	
Spike - % Recovery							
Organochlorine Pesticides				Result 1			
Endrin aldehyde	R24-Au0067466	NCP	%	128	70-130	Pass	
Methoxychlor	R24-Au0067466	NCP	%	85	70-130	Pass	
Spike - % Recovery							
Metals M8				Result 1			
Arsenic	X24-Au0066316	СР	%	84	75-125	Pass	
Cadmium	X24-Au0066316	СР	%	94	75-125	Pass	
Copper	X24-Au0066316	СР	%	94	75-125	Pass	
Lead	X24-Au0066316	СР	%	98	75-125	Pass	
Mercury	X24-Au0066316	СР	%	100	75-125	Pass	
Zinc	X24-Au0066316	СР	%	89	75-125	Pass	
Spike - % Recovery							
Polycyclic Aromatic Hydrocark	oons			Result 1			
Acenaphthene	S24-Au0054737	NCP	%	100	70-130	Pass	
Acenaphthylene	S24-Au0054737	NCP	%	103	70-130	Pass	
Anthracene	S24-Au0054737	NCP	%	88	70-130	Pass	
Benz(a)anthracene	S24-Au0054737	NCP	%	75	70-130	Pass	
Benzo(a)pyrene	S24-Au0054737	NCP	%	88	70-130	Pass	
Benzo(b&j)fluoranthene	S24-Au0080576	NCP	%	220	70-130	Fail	Q08
Benzo(g.h.i)perylene	S24-Au0054737	NCP	%	92	70-130	Pass	
Benzo(k)fluoranthene	S24-Au0054737	NCP	%	105	70-130	Pass	
Chrysene	S24-Au0054737	NCP	%	106	70-130	Pass	
Dibenz(a.h)anthracene	S24-Au0054737	NCP	%	89	70-130	Pass	
Fluoranthene	S24-Au0054737	NCP	%	96	70-130	Pass	
Fluorene	S24-Au0054737	NCP	%	97	70-130	Pass	
Indeno(1.2.3-cd)pyrene	S24-Au0054737	NCP	%	94	70-130	Pass	
Naphthalene	S24-Au0054737	NCP	%	101	70-130	Pass	
Phenanthrene	S24-Au0054737	NCP	%	82	70-130	Pass	
Pyrene	S24-Au0054737	NCP	%	90	70-130	Pass	
Spike - % Recovery			,,,			1 5.55	
Total Recoverable Hydrocarbo	ns - 1999 NEPM Fract	ions		Result 1			
TRH C6-C9	X24-Au0066354	CP	%	83	70-130	Pass	
Spike - % Recovery	1		,,		, , , , , , ,		
BTEX				Result 1			
Benzene	X24-Au0066354	СР	%	94	70-130	Pass	
Toluene	X24-Au0066354	CP	%	86	70-130	Pass	
Ethylbenzene	X24-Au0066354	CP	%	87	70-130	Pass	
m&p-Xylenes	X24-Au0066354	CP	%	97	70-130	Pass	
o-Xylene	X24-Au0066354	CP	%	96	70-130	Pass	
Xylenes - Total*	X24-Au0066354	CP	%	97	70-130	Pass	
7.5.51100 10101	1 7.2 1 7.400000004	_ <u> </u>	70	<u> </u>	1 70 100	, , 400	

Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Total Recoverable Hydrocarbons	s - 2013 NEPM Fract	ions		Result 1			
Naphthalene	X24-Au0066354	CP	%	80	70-130	Pass	
TRH C6-C10	X24-Au0066354	CP	%	84	70-130	Pass	
Spike - % Recovery				,			
Total Recoverable Hydrocarbons	s - 1999 NEPM Fract	ions		Result 1			
TRH C6-C9	X24-Au0066360	CP	%	83	70-130	Pass	
TRH C10-C14	X24-Au0066360	CP	%	90	70-130	Pass	
Spike - % Recovery							
BTEX				Result 1			
Benzene	X24-Au0066360	CP	%	87	70-130	Pass	
Toluene	X24-Au0066360	CP	%	77	70-130	Pass	
Ethylbenzene	X24-Au0066360	СР	%	88	70-130	Pass	
m&p-Xylenes	X24-Au0066360	СР	%	82	70-130	Pass	
o-Xylene	X24-Au0066360	СР	%	84	70-130	Pass	
Xylenes - Total*	X24-Au0066360	СР	%	83	70-130	Pass	
Spike - % Recovery		,					
Total Recoverable Hydrocarbons	s - 2013 NEPM Fract	ions		Result 1			
Naphthalene	X24-Au0066360	CP	%	89	70-130	Pass	
TRH C6-C10	X24-Au0066360	CP	%	79	70-130	Pass	
Spike - % Recovery	, AL : AGOOOOO		/0	, , , ,	1 170-100	, i uss	
Total Recoverable Hydrocarbons	s - 2013 NEPM Fract	ions		Result 1			
TRH >C10-C16	X24-Au0066360	CP	%	87	70-130	Pass	
	A24-A00000300	L CF	/0	01	70-130	Fass	
Spike - % Recovery				Dogult 1		I	
Metals M8	V04 A.,0000000	CD.	0/	Result 1	75.405	Dana	
Arsenic	X24-Au0066363	CP	%	85	75-125	Pass	
Cadmium	X24-Au0066363	CP	%	91	75-125	Pass	
Copper	X24-Au0066363	CP	%	98	75-125	Pass	
Lead	X24-Au0066363	CP	%	92	75-125	Pass	
Mercury	X24-Au0066363	CP	%	102	75-125	Pass	
Nickel	X24-Au0066363	CP	%	98	75-125	Pass	
Zinc	X24-Au0066363	CP	%	90	75-125	Pass	
Spike - % Recovery				T T			
Metals M8		1		Result 1			
Arsenic	X24-Au0066368	CP	%	90	75-125	Pass	
Cadmium	X24-Au0066368	CP	%	97	75-125	Pass	
Copper	X24-Au0066368	CP	%	105	75-125	Pass	
Lead	X24-Au0066368	CP	%	99	75-125	Pass	
Mercury	X24-Au0066368	CP	%	105	75-125	Pass	
Zinc	X24-Au0066368	CP	%	97	75-125	Pass	
Spike - % Recovery							
Metals M8				Result 1			
Arsenic	X24-Au0066378	CP	%	98	75-125	Pass	
Cadmium	X24-Au0066378	CP	%	101	75-125	Pass	
Chromium	X24-Au0066378	CP	%	100	75-125	Pass	
Copper	X24-Au0066378	СР	%	104	75-125	Pass	
Lead	X24-Au0066378	СР	%	105	75-125	Pass	
Mercury	X24-Au0066378	СР	%	111	75-125	Pass	
Nickel	X24-Au0066378	СР	%	102	75-125	Pass	
Zinc	X24-Au0066378	СР	%	104	75-125	Pass	
Spike - % Recovery	, , , , , , , , , , , , , , , , , , , ,				, , , , , , , , ,		
Total Recoverable Hydrocarbons	s - 1999 NEPM Fract	ions		Result 1			
TRH C10-C14	X24-Au0066411	CP	%	109	70-130	Pass	
Spike - % Recovery			70	1 100	1 10-100	, i uss	
Opino 70 Nocovery				Result 1			
Total Recoverable Hydrocarbons	2 - 2013 NEDM Eroct						

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Metals M8				Result 1	Result 2	RPD			
Arsenic	X24-Au0066313	CP	mg/kg	12	9.2	28	30%	Pass	
Chromium	X24-Au0066313	CP	mg/kg	32	27	16	30%	Pass	
Copper	X24-Au0066313	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Lead	X24-Au0066313	СР	mg/kg	11	9.6	13	30%	Pass	
Mercury	X24-Au0066313	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	X24-Au0066313	СР	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	X24-Au0066313	СР	mg/kg	< 5	< 5	<1	30%	Pass	
Duplicate			<u> </u>						
Sample Properties				Result 1	Result 2	RPD			
% Moisture	X24-Au0066316	СР	%	21	20	8.0	30%	Pass	
Duplicate	7.2 : 7.00000010	<u> </u>	,,,			0.0	3070		
Total Recoverable Hydrocarbons	s - 1999 NFPM Fract	ions		Result 1	Result 2	RPD			
TRH C10-C14	X24-Au0066321	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	X24-Au0066321	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	X24-Au0066321	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate Duplicate	724 Ad0000321	01	ilig/kg	\ 00	<u> </u>		3070	1 433	
Polycyclic Aromatic Hydrocarbo	ns			Result 1	Result 2	RPD			
Acenaphthene	X24-Au0066321	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	X24-Au0066321	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	X24-Au0066321	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	X24-Au0066321	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
	X24-Au0066321	CP		< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene Benzo(b&j)fluoranthene	X24-Au0066321	CP	mg/kg	< 0.5	< 0.5	<u><1</u>	30%	Pass	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		CP	mg/kg	1					
Benzo(g.h.i)perylene	X24-Au0066321	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	X24-Au0066321		mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	X24-Au0066321	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	X24-Au0066321	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	X24-Au0066321	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	X24-Au0066321	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	X24-Au0066321	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	X24-Au0066321	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	X24-Au0066321	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	X24-Au0066321	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				Τ	I I		T		
Organochlorine Pesticides				Result 1	Result 2	RPD	000/	_	
Chlordanes - Total	X24-Au0066321	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	X24-Au0066321	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	X24-Au0066321	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	X24-Au0066321	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-HCH	X24-Au0066321	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	X24-Au0066321	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-HCH	X24-Au0066321	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	X24-Au0066321	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	X24-Au0066321	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	X24-Au0066321	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	X24-Au0066321	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	X24-Au0066321	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	X24-Au0066321	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	X24-Au0066321	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	X24-Au0066321	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	X24-Au0066321	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	X24-Au0066321	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	

Duplicate									
				Door It 4	DII O	DDD	l		
Organochlorine Pesticides				Result 1	Result 2	RPD	2221	-	
Heptachlor epoxide	X24-Au0066321	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	X24-Au0066321	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	X24-Au0066321	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	X24-Au0066321	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				l	l _ l				
Polychlorinated Biphenyls	1			Result 1	Result 2	RPD		_	
Aroclor-1016	X24-Au0066321	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	X24-Au0066321	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	X24-Au0066321	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	X24-Au0066321	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	X24-Au0066321	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	X24-Au0066321	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	X24-Au0066321	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	X24-Au0066321	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	X24-Au0066321	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	X24-Au0066321	СР	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	X24-Au0066321	СР	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ons		Result 1	Result 2	RPD			
TRH C6-C9	X24-Au0066330	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate			199						
BTEX				Result 1	Result 2	RPD			
Benzene	X24-Au0066330	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	X24-Au0066330	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	X24-Au0066330	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	X24-Au0066330	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
o-Xylene	X24-Au0066330	CP		< 0.2	< 0.2	<1	30%	Pass	
		CP CP	mg/kg		†	<u><1</u>		1 1	
Xylenes - Total*	X24-Au0066330	CF	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate Tatal Bassyanahla Hudusaanhana	2042 NEDM Front			Daguit 4	Dagult 0	DDD	I		
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD	200/	Dana	
Naphthalene	X24-Au0066330	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	X24-Au0066330	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate				T	I . I		T		
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C10-C14	X24-Au0066336	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	X24-Au0066336	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	X24-Au0066336	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbor				Result 1	Result 2	RPD			
Acenaphthene	X24-Au0066336	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	X24-Au0066336	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	X24-Au0066336	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	X24-Au0066336	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	X24-Au0066336	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	X24-Au0066336	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	X24-Au0066336	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	X24-Au0066336	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	X24-Au0066336	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	X24-Au0066336	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	X24-Au0066336	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
					1		1	1 1	
Fluorene	X24-Au0066336	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate				1			ı	1	
Polycyclic Aromatic Hydrocarbon	S		1	Result 1	Result 2	RPD			
Naphthalene	X24-Au0066336	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	X24-Au0066336	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	X24-Au0066336	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate				ı			ı		
Polychlorinated Biphenyls	1 1		1	Result 1	Result 2	RPD			
Aroclor-1016	X24-Au0066336	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Aroclor-1221	X24-Au0066336	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Aroclor-1232	X24-Au0066336	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Aroclor-1242	X24-Au0066336	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Aroclor-1248	X24-Au0066336	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Aroclor-1254	X24-Au0066336	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Aroclor-1260	X24-Au0066336	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Total PCB*	X24-Au0066336	CP	mg/kg	< 1	< 1	<1	30%	Pass	
Duplicate				ı			I		
Total Recoverable Hydrocarbons			1	Result 1	Result 2	RPD			
TRH >C10-C16	X24-Au0066336	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	X24-Au0066336	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	X24-Au0066336	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate				1				1	
Metals M8	T T			Result 1	Result 2	RPD			
Arsenic	X24-Au0066339	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	X24-Au0066339	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	X24-Au0066339	CP	mg/kg	96	100	4.0	30%	Pass	
Copper	X24-Au0066339	CP	mg/kg	6.8	5.9	14	30%	Pass	
Lead	X24-Au0066339	CP	mg/kg	18	13	34	30%	Fail	Q15
Mercury	X24-Au0066339	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	X24-Au0066339	CP	mg/kg	15	15	4.0	30%	Pass	
Zinc	X24-Au0066339	CP	mg/kg	6.2	6.4	3.0	30%	Pass	
Duplicate				I			ı		
Sample Properties	T T		1	Result 1	Result 2	RPD			
% Moisture	X24-Au0066339	CP	%	16	18	12	30%	Pass	
Duplicate				I			I		
Total Recoverable Hydrocarbons			1	Result 1	Result 2	RPD			
TRH C10-C14	X24-Au0066348	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	X24-Au0066348	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	X24-Au0066348	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate	0040 NEDM 5			D 11.4		555	I		
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD	000/		
TRH >C10-C16	X24-Au0066348	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	X24-Au0066348	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	X24-Au0066348	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate				D 114	D	DDD			
Metals M8	V04 A 555555			Result 1	Result 2	RPD	0001		
Arsenic	X24-Au0066358	CP	mg/kg	4.5	4.5	2.0	30%	Pass	
Cadmium	X24-Au0066358	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	X24-Au0066358	CP	mg/kg	170	140	20	30%	Pass	
Copper	X24-Au0066358	CP	mg/kg	18	18	2.0	30%	Pass	
Lead	X24-Au0066358	CP	mg/kg	27	28	4.0	30%	Pass	
Mercury	X24-Au0066358	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	X24-Au0066358	CP	mg/kg	49	49	<1	30%	Pass	
Zinc	X24-Au0066358	CP	mg/kg	37	38	4.0	30%	Pass	

Report Number: 1132108-S

								-	
Duplicate									
Metals M8				Result 1	Result 2	RPD			
Arsenic	X24-Au0066360	CP	mg/kg	9.9	4.3	79	30%	Fail	Q15
Cadmium	X24-Au0066360	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Copper	X24-Au0066360	CP	mg/kg	25	25	3.0	30%	Pass	
Lead	X24-Au0066360	CP	mg/kg	22	18	20	30%	Pass	
Mercury	X24-Au0066360	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	X24-Au0066360	CP	mg/kg	180	160	14	30%	Pass	
Zinc	X24-Au0066360	СР	mg/kg	21	22	5.0	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Fracti	ions		Result 1	Result 2	RPD			
TRH C6-C9	X24-Au0066380	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	X24-Au0066380	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	X24-Au0066380	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	X24-Au0066380	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	X24-Au0066380	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
o-Xylene	X24-Au0066380	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
•		CP CP		1				1	
Xylenes - Total*	X24-Au0066380	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate Total Recoverable Hydrocarbons	2042 NEDM E 1	ian-		Descrit 4	Descrit o	DDD			
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD	200/	+_ +	
Naphthalene	X24-Au0066380	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	X24-Au0066380	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate				I	1		l		
Total Recoverable Hydrocarbons	- 1999 NEPM Fracti	ions		Result 1	Result 2	RPD			
TRH C6-C9	X24-Au0066386	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	X24-Au0066386	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	X24-Au0066386	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	X24-Au0066386	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	X24-Au0066386	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	X24-Au0066386	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	X24-Au0066386	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	X24-Au0066386	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	X24-Au0066386	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	X24-Au0066386	СР	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate							<u>'</u>		
Total Recoverable Hydrocarbons	- 2013 NEPM Fracti	ions		Result 1	Result 2	RPD			
Naphthalene	X24-Au0066386	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	X24-Au0066386	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate	7124 7100000000	OI .	i iiig/itg	1 20	\ <u>Z</u> 0		0070	1 455	
Polycyclic Aromatic Hydrocarbon	<u> </u>			Result 1	Result 2	RPD			
Acenaphthene	X24-Au0066386	СР	ma/ka	< 0.5	< 0.5		30%	Pass	
'			mg/kg			<1		1 1	
Acenaphthylene	X24-Au0066386	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	X24-Au0066386	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	X24-Au0066386	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	X24-Au0066386	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	X24-Au0066386	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	X24-Au0066386	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	X24-Au0066386	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	X24-Au0066386	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	X24-Au0066386	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	X24-Au0066386	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	X24-Au0066386	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate									
Polycyclic Aromatic Hydrocarbon	<u> </u>			Result 1	Result 2	RPD			
Indeno(1.2.3-cd)pyrene	X24-Au0066386	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	X24-Au0006386	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	X24-Au0066386	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	X24-Au0066386	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	724-Au0000300	Ci	l llig/kg	\ 0.5	_ < 0.5		30 78	1 033	
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	X24-Au0066386	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	X24-Au0066386	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	X24-Au0066386	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	X24-Au0066386	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-HCH	X24-Au0066386	CP		< 0.05	< 0.05	<1	30%	Pass	
Aldrin	X24-Au0066386	CP CP	mg/kg	< 0.05	< 0.05	<u> </u>	30%	Pass	
	X24-Au0066386	CP CP	mg/kg					Pass	
b-HCH			mg/kg	< 0.05	< 0.05	<1	30%		
d-HCH Dioldrin	X24-Au0066386	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin L	X24-Au0066386	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	X24-Au0066386	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	X24-Au0066386	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	X24-Au0066386	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	X24-Au0066386	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	X24-Au0066386	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	X24-Au0066386	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	X24-Au0066386	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	X24-Au0066386	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	X24-Au0066386	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	X24-Au0066386	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	X24-Au0066386	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Duplicate				I	T T				
Polychlorinated Biphenyls	1 1			Result 1	Result 2	RPD			
Aroclor-1016	X24-Au0066386	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	X24-Au0066386	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	X24-Au0066386	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	X24-Au0066386	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	X24-Au0066386	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	X24-Au0066386	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	X24-Au0066386	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	X24-Au0066386	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate				I	1 1		T		
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH >C10-C16	X24-Au0066386	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	X24-Au0066386	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	X24-Au0066386	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate				I _	_				
Metals M8	 		1	Result 1	Result 2	RPD			
Arsenic	X24-Au0066388	CP	mg/kg	2.2	< 2	16	30%	Pass	
Cadmium	X24-Au0066388	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	X24-Au0066388	CP	mg/kg	140	130	10	30%	Pass	
Copper	X24-Au0066388	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Lead	X24-Au0066388	CP	mg/kg	6.4	5.4	17	30%	Pass	
Mercury	X24-Au0066388	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	X24-Au0066388	CP	mg/kg	28	27	6.0	30%	Pass	
Zinc	X24-Au0066388	CP	mg/kg	< 5	< 5	<1	30%	Pass	

Duplicate									
Metals M8				Result 1	Result 2	RPD			
Arsenic	X24-Au0066390	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	X24-Au0066390	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	X24-Au0066390	CP	mg/kg	170	180	5.0	30%	Pass	
Copper	X24-Au0066390	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Lead	X24-Au0066390	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Mercury	X24-Au0066390	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	X24-Au0066390	CP	mg/kg	150	160	10	30%	Pass	
Zinc	X24-Au0066390	CP	mg/kg	6.2	6.1	2.0	30%	Pass	
Duplicate									
Sample Properties				Result 1	Result 2	RPD			
% Moisture	X24-Au0066390	CP	%	15	15	4.0	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Fracti	ions		Result 1	Result 2	RPD			
TRH C6-C9	X24-Au0066405	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate	1		199				22.12	1 5.55	
BTEX				Result 1	Result 2	RPD			
Benzene	X24-Au0066405	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	X24-Au0066405	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	X24-Au0066405	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	X24-Au0066405	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
o-Xylene	X24-Au0066405	CP	mg/kg	< 0.2	< 0.2	<u><1</u>	30%	Pass	
Xylenes - Total*	X24-Au0066405	CP		< 0.1	< 0.3	<u> </u>	30%	Pass	
	A24-Au0000405	CF	mg/kg	< 0.5	< 0.3	<1	30%	Fass	
Duplicate Total Basewarehie Hudroserhans	2042 NEDM Front			Decult 4	Deeuk 0	DDD			
Total Recoverable Hydrocarbons			,,	Result 1	Result 2	RPD	000/	+_	
Naphthalene	X24-Au0066405	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	X24-Au0066405	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate				Ι	I . I				
Total Recoverable Hydrocarbons			I	Result 1	Result 2	RPD			
TRH C6-C9	X24-Au0066409	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	X24-Au0066409	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	X24-Au0066409	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	X24-Au0066409	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
BTEX			1	Result 1	Result 2	RPD			
Benzene	X24-Au0066409	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	X24-Au0066409	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	X24-Au0066409	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	X24-Au0066409	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	X24-Au0066409	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	X24-Au0066409	СР	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 2013 NEPM Fracti	ions		Result 1	Result 2	RPD			
Naphthalene	X24-Au0066409	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	X24-Au0066409	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate			פיים.		,				
Polycyclic Aromatic Hydrocarbo	ns			Result 1	Result 2	RPD			
Acenaphthene	X24-Au0066409	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	X24-Au0066409	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	X24-Au0066409	CP CP	mg/kg	< 0.5	< 0.5	<1 <1	30%	Pass	
					1			1 1	
Benz(a)anthracene	X24-Au0066409	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	X24-Au0066409	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	X24-Au0066409	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	X24-Au0066409	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	X24-Au0066409	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Duplicate									
Polycyclic Aromatic Hydrocarbon	ne			Result 1	Result 2	RPD			
Chrysene	X24-Au0066409	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	X24-Au0066409	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	X24-Au0066409	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	X24-Au0066409	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	X24-Au0066409	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	X24-Au0066409	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	X24-Au0066409	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	X24-Au0066409	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	724 A00000403	<u> </u>	i ilig/kg	\ 0.5	\ 0.0		3070	1 433	
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	X24-Au0066409	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	X24-Au0066409	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	X24-Au0066409	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	X24-Au0066409	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-HCH	X24-Au0066409	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	X24-Au0066409	CP	mg/kg	< 0.05	< 0.05		30%	Pass	
b-HCH	X24-Au0066409	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-HCH	X24-Au0066409	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	X24-Au0066409	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	X24-Au0066409	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	X24-Au0066409	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	X24-Au0066409	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	X24-Au0066409	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	X24-Au0066409	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone	X24-Au0066409	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
g-HCH (Lindane)	X24-Au0066409	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	X24-Au0066409	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	X24-Au0066409	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	X24-Au0066409	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	X24-Au0066409	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Duplicate	724 Ad0000403	<u> </u>	i ilig/kg	\ 0.00	\ 0.00		3070	1 433	
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	X24-Au0066409	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	X24-Au0066409	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	X24-Au0066409	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	X24-Au0066409	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	X24-Au0066409	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	X24-Au0066409	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	X24-Au0066409	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	X24-Au0066409	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate	7.2 . 7.00000 .00	<u> </u>	ıg,g	1011	, , , , ,	**	3370	. 455	
Total Recoverable Hydrocarbons	- 2013 NEPM Fracti	ions		Result 1	Result 2	RPD			
TRH >C10-C16	X24-Au0066409	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	X24-Au0066409	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	X24-Au0066409	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate			<u> </u>						
Metals M8				Result 1	Result 2	RPD			
Arsenic	X24-Au0066411	СР	mg/kg	8.6	6.5	28	30%	Pass	
Cadmium	X24-Au0066411	СР	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	X24-Au0066411	СР	mg/kg	220	230	5.0	30%	Pass	
Copper	X24-Au0066411	СР	mg/kg	17	23	31	30%	Fail	Q15
Lead	X24-Au0066411	СР	mg/kg	23	21	8.0	30%	Pass	
Mercury	X24-Au0066411	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	X24-Au0066411	CP	mg/kg	16	20	20	30%	Pass	

Duplicate								
Total Recoverable Hydrocarbons -	1999 NEPM Fracti	ons		Result 1	Result 2	RPD		
TRH C6-C9	X24-Au0066427	CP	mg/kg	< 20	< 20	<1	30%	Pass
Duplicate	74217140000121	<u> </u>	ı ıııg/ııg	120	120	` '	3070	1 466
BTEX				Result 1	Result 2	RPD		
Benzene	X24-Au0066427	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass
Toluene	X24-Au0066427	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass
Ethylbenzene	X24-Au0066427	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass
m&p-Xylenes	X24-Au0066427	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass
o-Xylene	X24-Au0066427	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass
Xylenes - Total*	X24-Au0066427	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass
Duplicate	74217140000121	<u> </u>	ı ıııg/ııg	1 0.0		``	3070	1 466
Total Recoverable Hydrocarbons -	2013 NEPM Fracti	ons		Result 1	Result 2	RPD		
Naphthalene	X24-Au0066427	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass
TRH C6-C10	X24-Au0066427	CP	mg/kg	< 20	< 20	<1	30%	Pass
Duplicate			פיישייים				2370	
Total Recoverable Hydrocarbons -	1999 NEPM Fracti	ons		Result 1	Result 2	RPD		
TRH C6-C9	X24-Au0066429	СР	mg/kg	< 20	< 20	<1	30%	Pass
Duplicate			<u> </u>					
BTEX				Result 1	Result 2	RPD		
Benzene	X24-Au0066429	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass
Toluene	X24-Au0066429	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass
Ethylbenzene	X24-Au0066429	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass
m&p-Xylenes	X24-Au0066429	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass
o-Xylene	X24-Au0066429	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass
Xylenes - Total*	X24-Au0066429	СР	mg/kg	< 0.3	< 0.3	<1	30%	Pass
Duplicate								
Total Recoverable Hydrocarbons -	2013 NEPM Fracti	ons		Result 1	Result 2	RPD		
Naphthalene	X24-Au0066429	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass
TRH C6-C10	X24-Au0066429	CP	mg/kg	< 20	< 20	<1	30%	Pass
Duplicate								
Metals M8				Result 1	Result 2	RPD		
Arsenic	X24-Au0066430	CP	mg/kg	2.8	2.7	2.0	30%	Pass
Chromium	X24-Au0066430	CP	mg/kg	90	97	7.0	30%	Pass
Copper	X24-Au0066430	CP	mg/kg	19	17	11	30%	Pass
Lead	X24-Au0066430	CP	mg/kg	< 5	< 5	<1	30%	Pass
Mercury	X24-Au0066430	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass
Nickel	X24-Au0066430	CP	mg/kg	44	47	6.0	30%	Pass
Zinc	X24-Au0066430	CP	mg/kg	10	8.1	25	30%	Pass
Duplicate								
Sample Properties				Result 1	Result 2	RPD		
% Moisture	X24-Au0066431	CP	%	25	25	2.0	30%	Pass
Duplicate								
Sample Properties					Result 2	RPD		
% Moisture	X24-Au0066446	CP	%	23	24	5.0	30%	Pass

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

N02

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference. Q08

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Andrew Black Analytical Services Manager Chamath JHM Annakkage Senior Analyst-Asbestos Fang Yee Tan Senior Analyst-Metal Mickael Ros Senior Analyst-Metal Raymond Siu Senior Analyst-Volatile Roopesh Rangarajan Senior Analyst-Organic

Roopesh Rangarajan Senior Analyst-Sample Properties

Roopesh Rangarajan Senior Analyst-Volatile

Glenn Jackson **Managing Director**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 1132108-S

^{*} Indicates NATA accreditation does not cover the performance of this service

Regional Geotechnical Solutions 44 Bent Street Wingham NSW 2429

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Grant Colliar

Report 1140748-L

Project name ADDITIONAL: AQUATIC FACILITY

Project ID RGS21005.6 Received Date Sep 18, 2024

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			TP1 0.5-0.6m US Leachate S24-Se0048178 Aug 15, 2024	TP327 1.2-1.3m US Leachate S24-Se0048179 Aug 15, 2024
Test/Reference	LOR	Unit		
Heavy Metals				
Chromium	0.05	mg/L	-	< 0.05
Nickel	0.01	mg/L	< 0.01	-
USA Leaching Procedure				
Leachate Fluid*C01		comment	1.0	1.0
pH (initial)	0.1	pH Units	7.8	5.7
pH (off)*	0.1	pH Units	5.1	5.1
pH (USA HCl addition)*	0.1	pH Units	1.2	1.2

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Heavy Metals	Sydney	Sep 19, 2024	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
USA Leaching Procedure	Sydney	Sep 19, 2024	14 Days

- Method: LTM-GEN-7010 Leaching Procedure for Soils & Solid Wastes

Report Number: 1140748-L

email: EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

Site# 25403

ABN: 50 005 085 521

Melbourne Geelong Sydney Canberra Brisbane Newcastle 6 Monterey Road 19/8 Lewalan Street 179 Magowar Road Unit 1,2 Dacre Street 1/21 Smallwood Place 1/2 Frost Drive Dandenong South Grovedale Girraween Mitchell Murarrie Mayfield West VIC 3175 VIC 3216 NSW 2145 ACT 2911 QLD 4172 NSW 2304 +61 3 8564 5000 +61 2 9900 8400 +61 2 4968 8448 +61 3 8564 5000 +61 2 6113 8091 T: +61 7 3902 4600 NATA# 1261 NATA# 1261 NATA# 1261 NATA# 1261 NATA# 1261 NATA# 1261 Site# 20794 & 2780

Site# 25466

Site# 18217

ABN: 91 05 0159 898

Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 47 009 120 549 Perth ProMicro

46-48 Banksia Road

+61 8 6253 4444

Welshpool

WA 6106

NATA# 2561

Site# 2554

Auckland 35 O'Rorke Road Penrose, Auckland 1061 +64 9 526 4551 IANZ# 1327

NZBN: 9429046024954

Auckland (Focus) Christchurch Unit C1/4 Pacific Rise. 43 Detroit Drive Mount Wellington, Rolleston, Auckland 1061 +64 3 343 5201 +64 9 525 0568 IANZ# 1290

Tauranga 1277 Cameron Road. Gate Pa, Christchurch 7675 Tauranga 3112 +64 9 525 0568 IANZ# 1402

Address

web: www.eurofins.com.au

Company Name: Regional Geotechnical Solutions

44 Bent Street

Site# 1254

Wingham NSW 2429

Project Name: Project ID:

ADDITIONAL: AQUATIC FACILITY

RGS21005.6

Order No.: Report #: Phone:

Fax:

Site# 25079

1140748 (02) 65535641

Received: Sep 18, 2024 4:59 PM Sep 20, 2024 Due: **Priority:** 1 Day Contact Name: Grant Colliar

Eurofins Analytical Services Manager: Andrew Black

IANZ# 1308

		Sa	mple Detail			Chromium	Nickel	USA Leaching Procedure
Sydr	ney Laboratory	- NATA # 1261	Site # 18217	*		Х	Х	Х
Exte	rnal Laboratory							
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID			
1	TP1 0.5-0.6m	S24-Se0048178		Х	Х			
2	TP327 1.2- 1.3m	Aug 15, 2024		US Leachate	S24-Se0048179	Х		Х
Test	Counts		1	1	2			

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follow guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013. They are included in this QC report where applicable. Additional QC data may be available on request
- 2. Unless otherwise stated, all soil/sediment/solid results are reported on a dry weight basis.
- 3. Unless otherwise stated, all biota/food results are reported on a wet weight basis on the edible portion.
- 4. For CEC results where the sample's origin is unknown or environmentally contaminated, the results should be used advisedly.
- Actual LORs are matrix dependent. Quoted LORs may be raised where sample extracts are diluted due to interferences
- Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds where annotated.
- 7. SVOC analysis on waters is performed on homogenised, unfiltered samples unless noted otherwise.
- 8. Samples were analysed on an 'as received' basis.
- 9. Information identified in this report with blue colour indicates data provided by customers that may have an impact on the results.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to the 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours before sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and despite any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the sampling date: therefore, compliance with these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether, the holding time is seven days; however, for all other VOCs, such as BTEX or C6-10 TRH, the holding time is 14 days

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ppm: parts per million μg/L: micrograms per litre ppb: parts per billion %: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Colour: Pt-Co Units (CU) CFU: Colony Forming Unit

Terms

APHA American Public Health Association CEC Cation Exchange Capacity COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where moisture has been determined on a solid sample, the result is expressed on a dry weight basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting.

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank In the case of solid samples, these are performed on laboratory-certified clean sands and in the case of water samples, these are performed on de-ionised water NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC represents the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis SPIKE Addition of the analyte to the sample and reported as percentage recovery

SRA Sample Receipt Advice

The addition of a similar compound to the analyte target is reported as percentage recovery. See below for acceptance criteria Surr - Surrogate

Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment; however, free tributyltin was measured, and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits. TRTO

TCI P Toxicity Characteristic Leaching Procedure TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 6.0

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should only be used as a guide and may be different when site-specific Sampling Analysis and Quality Plan (SAQP) have been implemented.

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is ≤30%; however, the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50% Results >20 times the LOR: RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range, not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%, VOC recoveries 50 - 150%

PFAS field samples containing surrogate recoveries above the QC limit designated in QSM 6.0, where no positive PFAS results have been reported or reviewed, and no data was affected.

QC Data General Comments

- 1. Where a result is reported as less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown are not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery, the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results, a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data; thus, it is possible to have two sets of data

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank									
Heavy Metals									
Chromium			mg/L	< 0.05			0.05	Pass	
Nickel			mg/L	< 0.01			0.01	Pass	
LCS - % Recovery									
Heavy Metals									
Chromium			%	94			80-120	Pass	
Nickel			%	89			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Heavy Metals				Result 1					
Nickel	S24-Se0049636	NCP	%	96			75-125	Pass	
Spike - % Recovery									
Heavy Metals				Result 1					
Chromium	S24-Se0049636	NCP	%	98			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Chromium	S24-Se0048178	CP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
Nickel	S24-Se0048178	CP	mg/L	< 0.01	< 0.01	<1	30%	Pass	

Report Number: 1140748-L

Comments

Sample Integrity

Custody Seals Intact (if used)

Attempt to Chill was evident

Yes
Sample correctly preserved

Appropriate sample containers have been used

Yes
Sample containers for volatile analysis received with minimal headspace

Yes
Samples received within HoldingTime

Yes
Some samples have been subcontracted

No

Qualifier Codes/Comments

Code Description

C01 Leachate Fluid Key: 1 - pH 5.0; 2 - pH 2.9; 3 - pH 9.2; 4 - Reagent (DI) water; 5 - Client sample, 6 - other

Authorised by:

Andrew Black Analytical Services Manager
Mickael Ros Senior Analyst-Metal

Roopesh Rangarajan Senior Analyst-Sample Properties

Glenn Jackson Managing Director

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please $\underline{\text{click here.}}$

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 1140748-L

Comparison of Contamination Analysis Results with Adopted Investigation Levels (Results in mg/kg) National Environment Protection (Assessment of Site Contamination) Measure (NEPM 2013)

REDUMA.

Client: CO-OP Studio
clipticHetck.
Job No. RG32105.6
Project: Proposed Aqualic Facility
Location: Gordon Street, Port Macquarie

Location: Medical Athenton

SAMPLE	DEPTH	Maferial	Asbesfos Presence		TOTAL RECO	VERABLE HYD	ROCARBON	s		PAH	DOT+DDE	Aldrin	PC8		8 TEX				Heavy A	Metals			
BH301	(m) 0.1-0.2	Topsol/Fill	No No	<10	C10-C16 <50	C16-C34 <100	C34-C40 <100	TOTAL <50	Total <0.5	b-a-p (TEQ)	Pesticides <0.05	Pesficides <0.05	<0.1	Sum <0.2	Naphalene <1	As 5.2	Cd <0.4	Cr (Total)#	Cu 6.9	Pb 11	Ni 28	Zn 16	Hg <0.1
BH301	0.5-0.6	Fill	No	<10	<50	<100	<100	<50	<0.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	12	<0.4	32	<5	- 11	<5	16 <5	<0.1
BH302 BH302	0.3-0.4	Topsol/Fill Residual	No No	<10 <10	<50 <50	<100 <100	<100 <100	<50 <50	<0.5 <0.5	0.6 0.6	<0.05	<0.05	<0.1	<0.2	<1 <1	2.9 3.2	<0.4	300 200	7.2 5.7	12 <5	70 16	17 <5	<0.1 <0.1
BH303	0.3-0.4	Fil	No	<10	<50	<100	<100	<50	<0.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	4	<0.4	340	<5	6.3	31	<5	<0.1
BH304 BH304	0.2-0.3	Topsol/Fill Residual	No No	<10 <10	<50 <50	<100 <100	<100 <100	<50 <50	<0.5 <0.5	0.6 0.6	<0.05	<0.05	<0.1	<0.2 <0.2	<1	<2	<0.4	110 170	8.3 <5	40 7.4	29 28	23 <5	<0.1 <0.1
BH305	0.1-0.2	Topsol/Fil	No	<10	<50	<100	<100	<50	<0.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	2.2	<0.4	120	7.2	13	23	22	<0.1
BH305 BH306	1-1.1 0.1-0.2	Residual Topsol/Fill	No	<10 <10	<50 <50	<100 <100	<100	<50 <90	<0.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	3.9	<0.4	220 120	8.5	5.5	9.7	<5	<0.1
BH306	0.4-0.5	Residual	No.	<10	<50 <50	<100 <100	<100 <100	<50 <50	<0.5 <0.5	0.6 0.6	<0.05	<0.05	<0.1	<0.2	<1	4.9	<0.4	120 290	5.2 12	13 9.8	19 11	16 <5	<0.1 <0.1
BH307 BH307	0.1-0.2	Topsol/Fill	No	≤10	<50	<100	<100	<50	40.5	0.4	<0.05	50.05	50.1	s0.2		22	≤0.4	75	-11	. 13	14	26	s0.1
BH307 BH308	0.4 - 0.5 0.3-0.4	Residual Fill	No No	<10	<50	<100	<100	<90	<0.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	<2	<0.4	96	6.8	18	15	6.2	<0.1
BH308	0.6-0.7	Alluvial	No	<10	<50	<100	<100	<50	<0.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	2.5	<0.4	83	15	6.8	67	19	0.2
BH309	0.2-0.3	Topsol/Fill	No	<10	<50	<100	<100	<50	<0.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	<2	<0.4	58	<5	6.6	13	8.2	<0.1
BH309 BH310	0.6-0.7	Fil	No No	<10	<50	<100	<100	<50	<0.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	<2	<0.4	69	<5	<5	12	<5	<0.1
BH310	0.9-1	Residual	No No	<10 <10	<50 <50	<100 <100	<100 <100	<50 <50	<0.5	0.6	<0.05	<0.05	<0.1	<0.2 <0.2	<1 <1	2.7	<0.4	180 77	8.2 <5	10 <5	46 20	8.7 <5	<0.1 <0.1
BH311	0.3-0.4	Fill	No	<10	<50	<100	<100	<50	40.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	12	<0.4	160	17	16	23	25	<0.1
BH311	0.8-0.9	Alluvial	No	<10	86	1000	360	1446	40.5	0.4	<0.05	<0.05	s0.1	<0.2	<1	-2	<0.4	120	6	<5	80	7.3	≤0.1
BH311	0.8 - 0.9	Alluvial	No	ļ	ļ	ļ	L	ļ	ļ <u>-</u>	ļ	ļ <u>-</u>		L					ļ	ļ <u>-</u>			L	ļ
BH311 BH312	12-13 02-03	Alluvial Topsol/Fill	No No	<10	<50	<100	<100	<50	40.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	4.5	<0.4	170	18	27	49	37	<0.1
BH312	0.8-0.9	Fil	No	<10	<90	<100	<100	<90	40.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	9.9	<0.4	790	18 25	27	<0.1	180	<0.1
BH312	1.4 - 1.5	Alluvial	No	-	l	-	-	l	-	 	-	-			-	-	-	l -	-	-	-	-	T - 1
BH313	0.5-0.6	Alluvial	No	≤10	<50	<100	<100	<50	40.5	0.6	<0.05	<0.05	50.1	<0.2	<1	-92	≤0.4	70	5.4	<5	13	5	s0.1
BH313	1.4-1.5	Residual Toprol/FII	No No	ļ	ļ		ļ <u>.</u>		 	 	ļ 	<u> </u>	ļ <u>-</u>	ļ	ļ	ļ <u></u>		ļ -					
BH314 BH314	0.1-0.2	Topsol/Fill Fill	No No	<10 <10	<50 53	<100 <100	<100 <100	<50 <50	<0.5 <0.5	0.6	<0.05	<0.05	<0.1	<0.2 <0.2	<1	5.1	<0.4	190 60	12 5.3	11 5.7	20 31	12	<0.1 <0.1
BH315	0.5-0.6	Fil	No	<10	<s0< td=""><td><100</td><td><100</td><td><50 <50</td><td>40.5 40.5</td><td>0.6</td><td><0.05</td><td><0.05</td><td><0.1</td><td><0.2</td><td><1</td><td>2.4</td><td><0.4</td><td>60 59</td><td>10</td><td>10</td><td>21</td><td>15</td><td><0.1</td></s0<>	<100	<100	<50 <50	40.5 40.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	2.4	<0.4	60 59	10	10	21	15	<0.1
BH315	1.5-1.6	Residual	-	<10	<50	<100	<100	<50	40.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	8.8	<0.4	200	49	5.6	200	51	<0.1
BH316	0.3-0.4	Fil	No	<10	<50	<100	<100	<50	40.5	9.6	<0.05	50.05	s0.1	50.2	- st	7.6	<0.4	150	25	5.4	200	U	<0.1
BH316 BH317	1.3 - 1.4	Residual Topsol/Fill	No No	ļ <u>-</u>	 				 	 	 	<u> </u>	<u> </u>		ļ .	ļ <u>-</u>		ļ <u></u>		 			
BH317 BH317	0.6-0.7	Fill	No No	<10 <10	<50 <50	<100 <100	<100	<50 <50	<0.5 <0.5	0.6	<0.05	<0.05	<0.1	<0.2 <0.2	<1 <1	<2 12	<0.4	22 140	<5 17	5 7.5	9.8 70	15 17	<0.1 <0.1
BH318	0.3-0.4	Fil	No	<10	<50 <50	<100	<100	<50 <50	40.5 40.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	6.1	<0.4	150	17	110	24	82	<0.1
BH319	0.2-0.3	Topsol/Fill	No	<10	<50	<100	<100	<50	40.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	2.2	<0.4	87	11	12	15	22	<0.1
BH319	0.7-0.8 0.4-0.5	Residual Alluvial		<10	<50	<100	<100	<50	<0.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	2.2	<0.4	140	<5	6.4	28	<5	<0.1
BH320 BH320	1 - 1.1	Alluvial	No No	<10	<50	100	<100	100	<0.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	<2	<0.4	170	<5	<5	150	6.2	<0.1
BH321	0.1-0.2	Residual Topsol/Fill	No	<10	<50	<100	<100	<50	40.5	9.6	<0.05	<0.05	<0.1	<0.2	<1	48	<0.4	220	33	16	35	22	<0.1
BH321	0.5-0.6	Fil	No	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH321	1.2-1.3	Fil		<10	<50	<100	<100	<50	<0.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	<2	<0.4	75	<5	5.2	21	<5	<0.1
BH322 BH322	0.3-0.4	Fill	No	<10	<50	<100	<100	<50	<0.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	36	<0.4	250	24	11	34	7.4	<0.1
BH322 BH323	1.5 -1.6 0.2-0.25	Residual Topsol/Fill	No No							ļ													<0.1
BH323	0.3-0.4	Residual	No	<10 <10	<50 <50	<100 <100	<100 <100	<50 <50	<0.5 <0.5	0.6	<0.05	<0.05	<0.1	<0.2 <0.2	<1	<2 3.2	<0.4	170 260	<5 <5	<5 6.1	30 29	<5 <5	<0.1
BH324	0.7-0.8	Residual	No	<10	<50	<100	<100	<50	<0.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	2.7	<0.4	150	<5	<5	12	<5	<0.1
BH325	0.5-0.6	Fill	No	<10	<50	<100	<100	<50	<0.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	5.4	<0.4	220	7.4	7.9	27	15	<0.1
BH325 BH326	2-2.1	Residual Topsol/Fill	No	<10	<50	<100	<100	<50	<0.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	2	<0.4	110	130	5.2	450	190	<0.1
BH326	0.2-0.3 0.9-1.0	Fill	No No	<10	<50	<100	<100	<50	<0.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	8.6	<0.4	220	17	23	16	26	<0.1
BH327	0.6-0.7	Fil	No	<10 <10	<50 <50	<100 <100	<100	<50 <50	<0.5 <0.5	0.6	<0.05	<0.05	<0.1	<0.2 <0.2	<1 <1	7.8	<0.4	870 390	11 10	12 13	55 74	8.9 36	<0.1 <0.1
BH327	1.2-1.3	Fil	No	<10	120	<100	<100	120	40.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	17	<0.4	1200	39	15	69	16	<0.1
BH327	28-29	Alluvial	No	L	<u> </u>					<u> </u>										<u> </u>	<u></u>		<u> </u>
TP1	0-0.1	Topsol/Fill		<10	<50	<100	<100	<50	<0.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	3.4	<0.4	450	11	29	69	61	<0.1
TPI	0.5-0.6 1-1.5	Fill Topsol/Fill	No	≤10 —	<50	<100	<100	<50	40.5	0.4	<0.05	<0.05	50.1	s0.2		7.2	-50.4	1300	23	26	190	35	s0.1
TP2	0.1-0.2	Topsol/Fill	t	<10	<50	<100	<100	<50	<0.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	2.4	<0.4	140	9.1	17	35	34	<0.1
TP2	0.2-0.3	Fill	I	<10	<50	<100	<100	<50	40.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	3	<0.4	220	<5	8.8	26	<s< td=""><td><0.1</td></s<>	<0.1
TP3	0-0.1	Topsol/Fill	ļ	<10	<50	<100	<100	<50	<0.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	<2	<0.4	99	6.7	15	27	34	<0.1
TP3 TP4	0.4-0.5	Fill Topyol/Fil	 	<10	<50	<100	<100	<50	<0.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	<2	<0.4	92	<5	7.7	19	16	<0.1
TP4 TP6	0-0.1 0-0.1	Topsol/Fill Topsol/Fill	 	<10 <10	<50 <50	<100 <100	<100 <100	<50 <50	<0.5 <0.5	0.6	<0.05	<0.05 <0.05	<0.1	<0.2 <0.2	<1 <1	<2 2.8	<0.4	120 90	8.9 16	12 <5	40 44	27 10	<0.1 <0.1
TP6	0.4-0.5	Fil	t	<10	<50 <50	110	<100	110	40.5 40.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	7.4	<0.4	250	16	5.4	81	41	<0.1
TP6	0.9 -1.1	Alluvial	No							-	-			-		-					-		I - 1
TP7	0.5-0.6	Topsol/Fill	 	<10	<50	110	<100	110	<0.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	7.7	<0.4	400	25	19	150	42	<0.1
TP8	0.3-0.4	Fill	No	s10	<50	<100	<100	<50	40.5	9.6	<0.05	50.05	50.1	50.2		26	×0.4	220	6.1	6.8	51	7.1	:s0.L
TP8	0.7 -0.9 0.9 -1	Alluvial Alluvial	No No	t -	 			<u>-</u>	 	t	 		 			 		 	- -	- <u>-</u>	- 		1=1
TP9	0.2-0.3	Fil	I	<10	<50	<100	<100	<50	<0.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	3.7	<0.4	310	<5	7.9	42	7.3	<0.1
TP9	0.7-0.8	Alluvial	ļ	<10	<50	<100	<100	<50	<0.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	<2	<0.4	130	<5	<5	29	7.2	<0.1
TP10 TP10	0.3-0.4	Fil		≤10	<50	<100	<100	<50	40.5	9.6	<0.05	50.05	50.1	50.2	Sl	8.8	≤0.4	- 62	5.7	8.1	8.8	الف	<0.1
TP10 TP10	1.5-1.8 1.8 -2.0	Tospoil Alluvial	No No	ļ <u>-</u>					 	 	 	<u> </u>	 	 				 					1
D1	TP3(0-0.1)	t	† 	<10	<50	<100	<100	<50	<0.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	<2	<0.4	110	-5	12	20	15	<0.1
D2	BH302(1.1-1.2)	I	I	<10	<50	<100	<100	<50	<0.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	3.6	<0.4	190	9	<s< td=""><td>11</td><td><s< td=""><td><0.1</td></s<></td></s<>	11	<s< td=""><td><0.1</td></s<>	<0.1
D3	BH306(0.1-0.2)	ļ	ļ	<10	<50	<100	<100	<50	<0.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	3	<0.4	150	8.5	16	27	23	<0.1
D4 DS	BH312(0.8-0.9) BH319(0.2-0.3)	ļ	 	<10	<50	<100	<100	<50	<0.5	0.6	<0.05	<0.05	<0.1	<0.2	<1	- 11	<0.4	470	25	21	110	18	<0.1
D6	BH327(1.2-1.3)	 	 	<10 <10	<50 <50	<100 <100	<100 <100	<50 <50	<0.5 <0.5	0.6 0.6	<0.05	<0.05	<0.1	<0.2 <0.2	<1	7.4	<0.4	49 530	7.6 14	8.5 8	9.8 43	17 12	<0.1 <0.1
				110	-30	1100	1100	-20	-0.3	0.0	-0.03	-0.00	76.1	-0.2			10.0	3.0		ŭ	7	12	-0.1
D1 RPD										i —	1					-		-11%	-	22%	30%	78%	-
D2 RPD D3 RPD											1					-	-	-63%	-29%	-	84%	-	-
D3 89D D4 89D						1			l		1			l		-40% -11%	-	-22% 51%	-48% 0%	-21% 5%	-35%	-36% 164%	-
DS RPD									1		1					-	_	177%	107%	89%	-	165%	
D6 RPD					<u> </u>	-		-			1		-	-		79%		77%	94%	61%	46%	29%	-
CRITERIA (NEPM 2013 Health Investigation				NL	NL	NL	NL	NL.	300	3	400	10	,			300	90	300	17000	600	1200	30000	gn
Health Screening Lev	el (HSL)**							146	300	1		10				300	~	2.0	17000	555	1200	2000	~
Ecological Screening Ecological Investigat				180	120	300	2800			1					170	100		780	35	1100	30	140	
construct investigat	not terrel BEJE					1		1	Ì		1				170	100		780	CZ.	1700	30	140	
				-																			

CRITICAL

CHITICAL

The manufacture of the flat secundary (i.e. BREPA 2013)

** Issues Science Level 175 for residential lond use and fire contract self-close, 0.-1 m death

** Ecological Science (just et al. reconstruction land use

8 Ecological Investigation Level - oped (74 years) for recreational lond use

8 Ecological Investigation Level - oped (74 years) for recreational londuse

1 for Contract (Date 1 CRIT)

Summary Table - Comparison of Contamination Analysis Results With Waste Classification Threshold Limits (Results in mg/kg)

REGIONAL GEOTECHNICAL SOLUTIONS

Port Macquarie Hastings Council RGS21005.6 Client: Job No.

Proposed Aquatic Club Project: Gordon Street, Port Macquarie Location:

SAMPLE	MATERIAL	DEPTH	T	OTAL PETRO	LEUM HYDF	ROCARBONS	S	PAH	PCBs	OC/OP					HEAVY M	ETALS				
		(m)	C6-C9	C10-C14	C15-C28	C29-C36	TOTAL	FAII	(Total)	Pesticides	Arsenic	TCLP	Chromium*	TCLP	Nickel	TCLP	Lead	TCLP	Mercury	TCLF
TP1	FILL/TOPSOIL	0.5 - 0.6											<0.05							
BH327	FILL	1.2 - 1.3													<0.02					
																ļ				
												ļ				<u> </u>	<u> </u>			
																ļ				
																				<u></u>
									<u> </u>						ļ	ļ	<u> </u>			ļ
																<u> </u>		ļ		
									<u> </u>		<u> </u>				ļ	<u></u>	<u> </u>		<u> </u>	<u> </u>
																<u> </u>				<u> </u>
	IOLD LIMITS																			
GENERAL	SOLID WASTE	CT1					<u> </u>				100	<u> </u>	100		40	<u>i</u>	100	<u> </u>	4	. <u>ļ</u>
	SCC1 TCLP1	650				10000	200	<50	250	500 5	ļ	1900 5		1050	ļ	1500 5	ļ	50 0.2	. 	
RESTRICTED SOLID WASTE	CT2									400	<u> </u>	80		160		400		16	† 	
	SCC2	2600				40000	800	<50	1000	2000	<u> </u>	400		4200	<u></u>	6000		200	<u></u>	
		TCLP2	1					<u> </u>	1		20		4		8		20	<u> </u>	0.8	1

NOTES

Contaminant Threshold (without TCLP)

CT SCC Specific Contaminant Concentrations (used with TCLP)
Toxicity Characteristics Leaching Procedure (used with SCC)
Exceeds General Solid Waste Threshold = Restricted Solid Waste TCLP Shaded **BOLD** and Shaded Exceeds Restricted Solid Waste Threshold = Hazardous Waste

* Chromium CRVI

CRITERIA:

Waste Classification - Classifying Waste, Part 1 (NSW EPA 2014)

Appendix C Letter from Dr David Tully CEnvP SC

Contaminated Land Solutions

22 September 2024

Ref: CLS0268.L02.1

Regional Geotechnical Solutions Pty Ltd 1/12 Jindalee Road Port Macquarie NSW 2444

For the attention of Grant Collier

Dear Grant,

RE: Review of Stage 2 Site Contamination Assessment Report – Proposed Development Aquatic Facility, Gordon Street, Port Macquarie

I, Dr David Tully of Contaminated Land Solutions Pty Ltd, am a Certified Environmental Practitioner Site Contamination Specialist (General Certified Environmental Practitioner certification no. 1138 and Site Contamination Specialist certification no. SC40084).

I confirm I have reviewed the Regional Geotechnical Solutions report entitled "Stage 2 Site Contamination Assessment Report – *Proposed Development Aquatic Facility, Gordon Street, Port Macquarie*" (Ref: RGS21005.6.1-AG), dated 20 September 2024 and a copy of which I have retained.

I can confirm that on the basis of the information contained within the report, I support the conclusions and recommendations provided therein.

Should the client, regulator or local authority have any queries regarding the report review, I can be contacted by e-mail via david.tully@contaminatedlandsolutions.com.au. Specific queries regarding the content of the report should be addressed to Grant Collier at Regional Geotechnical Solutions.

For and on behalf of

Contaminated Land Solutions Pty Ltd

Dr David Tully CEnvP SC

Director

Contaminated Land Solutions Pty Ltd

Contaminated Land Solutions Pty Ltd 10 Heath Road Crafers West SA 5152 0410 012 292

Co.Op Studio

Geotechnical Assessment

Proposed Aquatic Facility

Gordon Street, Port Macquarie

Report No. RGS21005.6-AH

13 September 2024

Manning-Great Lakes

Port Macquarie

Coffs Harbour

RGS21005.6-AH

13 September 2024

Co.Op Studio 35 Richards Avenue SURREY HILLS NSW 2010

Attention: David Huntley

Dear David,

RE: Proposed Aquatic Facility – Gordon Street, Port Macquarie

Geotechnical Assessment

As requested, Regional Geotechnical Solutions Pty Ltd (RGS) has undertaken a geotechnical assessment for the proposed Aquatic Facility at Gordon Street, Port Macquarie.

The assessment found that an Acid Sulfate Soils Management Plan will be required for excavations within the alluvial soils. The Acid Sulfate Soils Management Plan is presented in Appendix C.

Andre My

Email grant.c@regionalgeotech.com.au

Web: www.regionalgeotech.com.au

If you have any questions regarding this project, please contact the undersigned.

For and on behalf of Regional Geotechnical Solutions Pty Ltd

Prepared by Reviewed by

Grant Colliar Andrew Hills

Senior Engineering Geologist Associate Environmental Engineer

effelle-

Table of Contents

1 INTRODUCTION	4
2 METHODOLOGY	4
3 LABORATORY TESTING	4
4 SITE CONDITIONS	
4.1 Surface Conditions	
4.2 Subsurface Conditions	
5 ACID SULFATE SOILS	
6 LIMITATIONS	

Figures

Figure 1 Investigation Location Plan

Appendices

Appendix A Results of Field Investigations

Appendix B Laboratory Test Results

Appendix C Acid Sulfate Soils Management Plan

1 INTRODUCTION

Regional Geotechnical Solutions Pty Ltd (RGS) has undertaken a geotechnical assessment for the proposed Aquatic Facility at Gordon Street, Port Macquarie

The project involves the development of a new aquatic facility located at Macquarie Park, Port Macquarie complete with an indoor aquatic hall including water play area, health fitness and wellness building, building entrance and amenities, change rooms and kiosk and an outdoor aquatic area including an eight lane 50m pool with spectator seating.

The purpose of the assessment was to provide comments and recommendations on the following:

- A geotechnical model of the sites that includes the depth of the soil profiles;
- The presence of Acid Sulfate Soils;
- The requirement for an Acid Sulfate Soil Management Plan; and
- Presence of groundwater.

The work was commissioned by David Huntley on behalf of Co.Op Studio and was undertaken in accordance with proposal number RGS21005.6-AF dated 20 August 2024.

2 METHODOLOGY

Field work for the assessment was undertaken on 19 October 2023 and was based on the supplied drawing titled "GENERAL ARRANGEMENT PLAN". Fieldwork was undertaken on 17 July 2024 and included:

- Observation of site features and surrounding features relevant to the geotechnical conditions of the site:
- Ten (10) boreholes drilled using a 4WD mounted drilling rig using augering methods to depths ranging from 1.3m to 3m, logged and sampled by a geotechnical engineer. The boreholes were undertaken in conjunction with a Stage 2 Contamination assessment; and
- Collection of samples for subsequent laboratory testing.

Engineering logs of the boreholes presented in Appendix A. Investigation locations are shown on the attached Figure 1 and were obtained by measurements to prominent site features. Coordinates of investigation locations were recorded using a hand held GPS and the coordinates are shown on the engineering logs.

3 LABORATORY TESTING

Samples retrieved during field work were returned to NATA accredited laboratories for testing which included the following;

- Acid Sulfate Soil (ASS) screening; and
- Detailed Chromium Reducible Sulphur (CRS) analysis for Potential ASS.

The laboratory test results are summarised in Section 5. Laboratory test result sheets are presented in Appendix B.


4 SITE CONDITIONS

4.1 Surface Conditions

The site is approximately 2.5ha in area and is located within the Macquarie Park. The site comprises grassed playing fields with surface elevations ranging from approximately RL 3m in the south west to RL 5m in the north east.

The site is situated at the toe of a south facing ridge slope and grades down to the south towards Wrights Creek. It appears to have been a low-lying landscape that has been historically modified by site filling works.

A satellite image that shows the location of the site and the site setting is reproduced in Plate 1.

Plate 1: Satellite image dated 2012 obtained from the NSW Government 'Six Maps' website that illustrates the site location and setting at Macquarie Park. The approximate area of assessment is outlined in red. The northern half of the site is proposed for pools and structures and the southern half for car parking.

Drainage of the site would be via a combination of overland flow and surface infiltration.

Selected images from the investigation are presented below.

Looking south across open grassed area located in southwest corner of the site.

Looking south across playing fields. Site has been modified by filling works to create a near level surface.

4.2 Subsurface Conditions

The site is situated in an area of gently undulating topography that is underlain by deeply weathered geological units of the Port Macquarie Block which includes slate, chert, basalt, serpentinite and dolerite.

Reference to the Port Macquarie Quaternary Geology Sheet indicates there are Quaternary alluvial valley fill deposits present in the south west of the site that may comprise alluvial clays, silts, sand or gravel.

Reference to historical aerial photographs provided by Council indicate that in 1942 and 1959 there was an alluvial drainage line located near the northern site boundary. By 1975 the north of the site had been modified by filling works including the filling of the alluvial drainage line near the northern site boundary. In 1981 and also in 1990, site filling works are visible in the south, south west corner and near the western boundary where the Munster Street car park is now present.

The materials encountered during the investigation are summarised in Table 1 and 2. Further details are presented on the attached engineering logs.

Table 1: Summary of Geotechnical Units

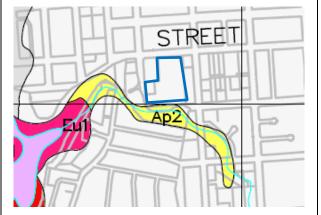
Unit	Material	Material Description
UNIT 1	FILL/TOPSOIL	Silty sandy CLAY, high plasticity, dark brown, trace grass roots
UNIT 2	FILL CLAY	Sandy gravelly CLAY to Silty sandy CLAY, medium to high plasticity, red/brown/grey/orange gravel is fine to medium.
UNIT 3	TOPSOIL	Silty sandy CLAY, high plasticity, brown/dark grey

Unit	Material	Material Description
UNIT 4	ALLUVIAL	Silty CLAY to Silty Sandy CLAY, medium to high plasticity, dark grey/pale brown/grey
UNIT 5	RESIDUAL	Sandy CLAY, medium plasticity, red/brown/orange

Table 2: Summary of Subsurface Materials

Tool		Dep	oth to Base of M	Naterial Layer (m)	
Test Location	Unit 1- Fill/Topsoil	Unit 2 – Fill Clay	Unit 3 - Topsoil	Unit 4 - Alluvial	Unit 5 - Residual	Water Inflow
BH301	0.2	2.0		≥2.0		1.4m
BH302	0.6	1.9		≥2.0		
BH303	0.2	1.2		≥1.3		
BH306	0.2				≥1.5	
BH309	0.4	0.8	1		≥1.6	
BH311	0.25	0.75	1	≥3.0		0.9m
BH319	0.3	1	1	1.1	≥1.5	
BH321	0.2	1.1	1	≥1.9		
BH324	0.2	1	1	1.4	≥1.7	
BH326	0.3	1.8	-	≥3.0		
ВНЗВ*	0.2	2.0		≥3.1		

Notes * Test location from previous geotechnical investigation, refer to report RGS21005.6-AD_Rev1


Groundwater inflows were observed within the boreholes at the levels shown in Table 2. It should be noted that fluctuations in groundwater levels can occur as a result of seasonal variations, temperature, rainfall, and other similar factors, the influence of which may not have been apparent at the time of the assessment.

5 ACID SULFATE SOILS

Reference to the Port Macquarie ASS Risk Map (DLWC, 2000) indicates there is a low probability of ASS between 1m and 3m below the ground surface in an alluvial plain located near the southern boundary of the site as shown in Plate 3. There is no known occurrence of ASS in the remainder of the site, however, it is noted that the ASS in the area appears to be associated with alluvial depressions that have been subsequently filled which is not shown on the mapping.

Approximate location of the site is shown in red as indicated by Six Maps image.

Extract from the Port Macquarie ASS Risk Map (DLWC, 2000) indicates there is a low probability of ASS between 1m and 3m below the ground surface in an alluvial plain located near the southern boundary. Approximate location of the site is shown in blue.

ASS produce sulphuric acid when exposed to oxygen due to the presence of iron sulphides in the form of pyrite within the soil matrix. These soils form when iron-rich sediments are deposited in saltwater or brackish water environments. Prior to oxidation, these pyritic soils are referred to as Potential ASS. ASS that have produced acid as a result of oxidation are referred to as Actual ASS. They typically occur in natural, low-lying coastal depositional environments below approximately 5m AHD. In the field ASS are generally identified as saline sediments such as alluvial or estuarine soils or bottom sediments in creeks and estuaries.

In environments such as that which exists at the site, the pyrite and resultant acidity (if any) would exist within the fine-grained fraction of the sediment profile.

Ten samples obtained from the boreholes were screened for the presence of actual or potential ASS using methods 23Af and 22Bf of the ASSMAC Acid Sulfate Soils Manual. The test results are attached. The results indicated:

- The samples revealed pHf values of 4.94 to 7.63 in distilled water. In this test, pH <4 can be
 an indicator of Actual ASS; and
- The samples revealed pHFOX values of 3.73 to 7.51 in hydrogen peroxide. Values of less than 3 can be an indicator of Potential ASS.

To provide a more comprehensive assessment, five samples were submitted for CRS analysis, to differentiate between potential organic or inorganic sources of sulfur. A summary of the test results is presented in Table 3.

Table 3: Summary of ASS CRS Test Results

Borehole	Depth	Texture		Trail (mol /tonne)		rail (% S sable)	Net Acidity (mol	Liming Rate (kg /		
	(m)		TAA	Action Criteria	Scr	Scr Action Criteria				Tonne)
BH302	2.1 – 2.2	Fine	22	62	0.008	0.1	27	2		
BH306	1.2 – 1.3	Fine	5	62	<0.005	0.1	5	0		
BH311	2.2 - 2.3	Fine	17	62	<0.005	0.1	17	1		
BH319	0.7 – 0.8	Fine	26	62	<0.005	0.1	29	2		
BH324	1 – 1.2	Fine	9	62	<0.005	0.1	9	1		
внзв*	2.0 – 2.5	Fine	9	62	0.229	0.1	152	11		

Note: The adopted action criteria assume that <1000tonnes of soil is to be disturbed. If >1000tonnes of material is to be disturbed, action criteria of 18 mol H+/tonne or 0.03% Sulfur would apply.

A review of the above results indicates the following:

- Each of the samples recorded Titratable Actual Acidity (TAA) that did not exceeded the adopted action criteria indicating the absence of actual acidity;
- Oxidisable sulfur concentrations exceeded the adopted action criteria in sample BH3B 2.0 –
 2.5m;
- Net acidity exceeded the adopted action criteria in the same sample as outlined above indicating the presence of Potential ASS (PASS).

Based on the CRS test results presented above, the alluvial soils encountered within the proposed development excavations are considered to be PASS and as such an ASS Management Plan (ASSMP) will be required where excavation of these soils is proposed.

An ASSMP has been prepared and is presented in Appendix C. The ASSMP is based on lime treatment of the soils excavated from below existing ground level and assumes a liming rate calculated on the basis of less than 1,000 tonnes of excavated soil, adopting the following:

- Mean Net Acid Generating Potential of 39 molH+/tonne for the six samples indicating the presence of Potential ASS in Table 3, with a Standard Deviation of 50.9 mol H+/tonne;
- Ag lime for neutralisation is to have a neutralising value (NV) of at least 90%; and
- A Factor of Safety of 1.5 for incomplete mixing.

6 LIMITATIONS

This report comprises the results of an investigation carried out for a specific purpose and client as defined in the document. The report should not be used by other parties or for purposes or projects other than those assumed and stated within the report, as it may not contain adequate or appropriate information for applications other than those assumed or advised at the time of its

^{*} Test result from previous geotechnical investigation, refer to report RGS21005.6-AD_Rev1

preparation. The contents of the report are for the sole use of the client and no responsibility or liability will be accepted to any third party. The report should not be reproduced either in part or in full, without the express permission of Regional Geotechnical Solutions Pty Ltd.

Geotechnical site investigation is based on data collection, judgment, experience, and opinion. By its nature, it is less exact than other engineering disciplines. The findings presented in this report and used as the basis for the recommendations presented herein were obtained using normal, industry accepted geotechnical design practises and standards. To our knowledge, they represent a reasonable interpretation of the general condition of the site. Under no circumstances, however, can it be considered that these findings represent the actual state of the site at all points.

The recommended depth and properties of any soil, rock, groundwater, or other material referred to in this report is an engineering estimate based on the information available at the time of its writing. The estimate is influenced and limited by the fieldwork method and testing carried out in the site investigation, and other relevant information as has been made available. In cases where information has been provided to Regional Geotechnical Solutions for the purposes of preparing this report it has been assumed that the information is accurate and appropriate for such use. No responsibility is accepted by Regional Geotechnical Solutions for inaccuracies within any data supplied by others.

If site conditions encountered during construction vary significantly from those discussed in this report, Regional Geotechnical Solutions Pty Ltd should be contacted for further advice.

This report alone should not be used by contractors as the basis for preparation of tender documents or project estimates. Contractors using this report as a basis for preparation of tender documents should avail themselves of all relevant background information regarding the site before deciding on selection of construction materials and equipment.

If you have any questions regarding this project, or require any additional consultations, please contact the undersigned.

For and on behalf of Regional Geotechnical Solutions Pty Ltd

Prepared by

Reviewed by

Grant Colliar

Andrew Hills

Senior Engineering Geologist

Alden

Associate Environmental Engineer

Indre Agy

Figures

Based on SixViewer 2012 satellite image

<u>Legend</u>

→ Borehole Location

REGIONAL
GEOTECHNICAL
SOLUTIONS

	.00			
	Client:	CO-OP STUDIO	Job No.	RGS21005.6
	Project:	PROPOSED AQUATIC CENTRE	Drawn By:	НМ
CAL			Scale:	NTS
		MACQUARIE PARK, GORDON STREET, PORT MACQUARIE	Date:	12-Sep-24
	Title:	INVESTIGATION LOCATION PLAN	Figure No.	1

Appendix A Results of Field Investigations

CLIENT:

Co-Op Studio

PROJECT NAME: Aquatic Facility

SITE LOCATION: Gordon Street, Port Macquarie

TEST LOCATION: Refer to Figure **DATE:** 15/8/24

BOREHOLE NO: BH301

1 of 1

НМ

RGS21005.6

PAGE:

JOB NO:

LOGGED BY:

DRILL TYPE: RGS Ute Mounted Drill Rig EASTING: 491842 m SURFACE RL:

		YPE: OLE DIAN		Jte Mou :: 50 m		_	EASTING: CLINATION: 90° NORTHING:	491842 6522356		DATU		IXL.	AHD
	Drill	ing and Sar	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T		0.10m ES		-		SC	TOPSOIL: Silty Sandy CLAY, high plasticit brown, sand, fine to medium grained.	y, dark	× ×	F			TOPSOIL/ FILL
				-		CL	Sandy Gravelly CLAY: Medium plasticity, brown, sand, fine to coarse grained, gravel medium grained, angular to subrounded.			St	HP HP	180 180	FILL
		0.50m ES		0. <u>5</u>		CI	Silty Sandy CLAY: Medium plasticity, whit red, sand, fine to coarse grained.	e mottled		VSt	HP	300	FILL
				-							HP	250 250	
	15/8/2024			1. <u>0</u> -		CI	Silty Sandy CLAY: High plasticity, red, sar medium grained.	nd, fine to	Α « «	St	HP HP	110 180	FILL
	15/8			1.5 <u>-</u>							HP	110	
		2.10m ASS 2.20m	_	2. <u>0</u> -	x x x	СН	Silty Sandy CLAY: High plasticity, dark grafine to medium grained.	ey, sand,		S	HP HP	30 30	ALLUVIUM
		2.2011		2.5	X X X X X X X _ X		2.50m				HP	40	
				3. <u>0</u>			Hole Terminated at 2.50 m						
LEG Wat	GEND:			Notes, Sa	-		_	1	ery Soft		<2		Moisture Condition D Dry
▼	Wat (Dat - Wat	er Level te and time s er Inflow er Outflow anges	1	U ₅₀ CBR E ASS B	Bulk s Enviro Acid S Bulk S	ample fo	er tube sample or CBR testing I sample oil Sample	F F St S VSt V H H	oft irm tiff 'ery Stiff lard riable		50 10 20 >4	5 - 50 0 - 100 00 - 200 00 - 400 400	
	tra D	radational or ansitional stra efinitive or di rata change	ata	PID DCP(x-y) HP	Photo Dynar	nic pene	in detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	V L ME D VD	Lo M D	ery Lo oose lediun ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT:

Co-Op Studio

PROJECT NAME: Aquatic Facility

SITE LOCATION: Gordon Street, Port Macquarie

TEST LOCATION: Refer to Figure **DATE:** 15/8/24

BOREHOLE NO: BH302

1 of 1

НМ

RGS21005.6

PAGE:

JOB NO:

LOGGED BY:

DRILL TYPE: RGS Ute Mounted Drill Rig EASTING: 491821 m SURFACE RL:

		YPE: OLE DIAN		Jte Mou : 50 m		-	EASTING: CLINATION: 90° NORTHING:	491821 6522346		SURF. DATU		RL:	AHD
	Drill	ing and Sar	mpling				Material description and profile information				Field	d Test	
МЕТНОБ	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticil characteristics, colour, minor componer		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Not Encountered	0.30m ES		- - - 0.5_		SC	TOPSOIL: Sandy CLAY, high plasticity, da sand, fine to medium grained.	rk brown,	M < Wp	Fr			TOPSOIL/ FILL
		1.10m ES		- - 1.00 - - - - 1.5_		CL	Silty Sandy CLAY: Pale brown, sand, fine grained. 0.90m Sandy Gravelly CLAY: Medium plasticity, fine to coarse grained, gravel, fine to medii grained, subangular to subrounded.	red, sand,		VSt	HP HP	190 220 240	FILL
LEG Wat		2.10m ASS 2.20m		2.0 <u></u>	X X X X X X X X X X X X X X X X X X X	CL	Silty Sandy CLAY: Bluish pale grey, sand medium grained.	, fine to			HP HP	300 300 280	ALLUVIAL
							Hole Terminated at 3.00 m						
LEG Wat	Wat	er Level		Notes, Sa U ₅₀ CBR	50mm	ı Diamet	<u>s</u> er tube sample or CBR testing	S S	ncy Yery Soft Soft		<2 25	CS (kPa 25 5 - 50) - 100	Moisture Condition D Dry M Moist W Wet
Stra	Wat Wat ta Cha	te and time s er Inflow er Outflow anges radational or ansitional stra	hown)	E ASS B Field Tes	Enviro Acid S Bulk S	onmenta Sulfate S Sample	I sample oil Sample in detector reading (ppm)	St S VSt V H H	stiff fery Stiff lard riable V L	V	10 20	00 - 200 00 - 400 100	W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 15 - 35%
	_ D	ansitional stra efinitive or di rata change		DCP(x-y) HP	Dynar	nic pene	terometer test (test depth interval shown) meter test (UCS kPa)		ME D VD) M D		n Dense ense	-

CLIENT:

Co-Op Studio

PROJECT NAME: Aquatic Facility

SITE LOCATION: Gordon Street, Port Macquarie

TEST LOCATION: Refer to Figure **DATE:** 15/8/24

BOREHOLE NO: BH303

1 of 1

НМ

RGS21005.6

PAGE:

JOB NO:

LOGGED BY:

DRILL TYPE: RGS Ute Mounted Drill Rig EASTING: 491822 m SURFACE RL:

		YPE: OLE DIAN		Ite Moui 50 mi			EASTING: CLINATION: 90° NORTHING:	491822 6522331		SURF. DATU		RL:	AHD
	Drill	ing and Sar	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Encountered			-		SC	FILL: Silty Sandy CLAY, high plasticity, dar sand, fine to medium grained.	k brown,		F			FILL/TOPSOIL
	Not Encou	0.30m ES		- - 0.5		CL	FILL CLAY: Medium plasticity, red.						FILL CLAY
				-		CL	0.70m FILL CLAY: Medium plasticity, orange brow	vn.	-	St	_	-	RESIDUAL
		1.10m		1.0_									
		ASS 1.20m		_		CL	1.20m Sandy Gravelly CLAY: Reddish brown, lov plasticity, sand, fine to coarse grained, grav			St	_	-	ALLUVIAL
LEG Wat				- 1. <u>5</u> -			grained, subangular to subrounded. Hole Terminated at 1.30 m	/					
				2.0_ -									
				- 2. <u>5</u> -									
				3. <u>0</u>									
LEG	END:			- Notes, Sa	mples a	nd Test	s	Consiste	ncy		U	CS (kPa) Moisture Condition
Wat Stra	er Wat (Dat Wat	er Level te and time s er Inflow er Outflow anges	hown)	U₅ CBR E ASS B	50mm Bulk s Enviro Acid S	Diame ample f	er tube sample or CBR testing I sample ioil Sample	VS V S S F F St S VSt V	ery Soft oft irm tiff ery Stiff lard riable		25 50 10 20	•	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
	G tra De	radational or ansitional stra efinitive or di rata change	ata	Field Test PID DCP(x-y) HP	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Density	V L ME D VD	Lo M D	ery Lo oose lediun ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

Co-Op Studio

PAGE: 1 of 1

DATE:

PROJECT NAME: Aquatic Facility

TEST LOCATION: Refer to Figure

CLIENT:

JOB NO: RGS21005.6

BOREHOLE NO: BH306

SITE LOCATION: Gordon Street, Port Macquarie

LOGGED BY: HM

15/8/24

DRILL TYPE: RGS Ute Mounted Drill Rig **EASTING**: 491822 m **SURFACE RL**:

ВС	REH	OLE DIAN	METER:	50 mr	n	IN	CLINATION: 90° NORTHING:	6522291	m [DATU	M:		AHD
	Dril	ling and Sar	mpling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Encountered	0.10m ES		_		SC	TOPSOIL: Silty Sandy CLAY, high plasticit brown, sand, fine to medium grained.	y, dark		F			TOPSOIL
	=	0.40m ES		- - 0. <u>5</u> -		CL	Sandy CLAY: Medium plasticity, reddish b sand, fine to coarse grained, traces of grav medium grained, subangular to subrounde	el, fine to		St	HP HP HP	260 280 280	RESIDUAL
		1.20m ASS		- 1. <u>0</u> - -		CL	Sandy CLAY: Medium plasticity, orange br sand, fine to coarse grained, traces of grav medium grained, angular to subangular.	el, fine to	-	St	HP HP HP	340 · 320 380	RESIDUAL
		1.30m		1.5		CL	Sandy Gravelly CLAY:Low plasticity, grey brown, sand, fine to coarse grained, gravel medium grained, subangular to subrounde Hole Terminated at 1.50 m	, fine to		St			EXTREMELY WEATHERED
				- 2.0_ - - - 2.5_									
				3.0 - - - -									
<u>Wa</u> <u>▼</u>	Wai (Da - Wai ¶ Wai ata Ch G tr: D	ter Level te and time s ter Inflow ter Outflow anges rradational or ansitional stra efinitive or di trata change	hown)	Notes, Sal U ₅₀ CBR E ASS B Field Test PID CCP(x-y) HP	50mm Bulk s Enviro Acid S Bulk S Bulk S	Diame ample f nmenta sulfate S ample onisationic pend	ter tube sample or CBR testing I sample ioil Sample on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	S S F F St S VSt V H H	ncy ery Soft oft irm tiff ery Stiff ard riable V L MC D VD	Lo M D	25 50 10 20 >4 ery Lo	6 - 50 1 - 100 0 - 200 0 - 400 000 000	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 15 - 35%

Co-Op Studio

PROJECT NAME: Aquatic Facility

CLIENT:

SITE LOCATION: Gordon Street, Port Macquarie

LOGGED BY: НМ **TEST LOCATION:** Refer to Figure DATE: 15/8/24

BOREHOLE NO: BH309

1 of 1

RGS21005.6

PAGE:

JOB NO:

DRILL TYPE: RGS Ute Mounted Drill Rig **EASTING:** 491859 m SURFACE RL:

		YPE: OLE DIAN		Jte Mou L: 50 m			CLINATION: 90° NORTHING:	491859 6522208		DATU		KL.	AHD
	Drill	ling and Sar	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measure	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity characteristics, colour, minor component	//particle is	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Not Encountered	0.20m ES		-		SC	TOPSOIL: Silty Sandy CLAY, high plasticity brown, sand, fine to medium grained.	/, dark		F			TOPSOIL
	Z	0.60m ES		0. <u>5</u>	X X X X X X X X _	OL	Silty Sandy CLAY: High plasticity, pale bro sand, fine to medium grained.	wn,		S	HP HP	10 10 10	FILL
				1. <u>0</u>		CL	Sandy Gravelly CLAY: Medium plasticity, brown, sand, fine to medium grained, suba subrounded.			St	HP HP	310 290 300	RESIDUAL
				- - 1. <u>5</u>		CL	1.30m Sandy CLAY: Medium plasticity, brown, sa to coarse grained, traces of gravel, fine to r grained, subangular to rounded.			St	HP HP	450 420 410	RESIDUAL
				-			Hole Terminated at 1.60 m						
				2.0									
				2. <u>5</u>									
				3. <u>0</u>									
				-									
Wat	Wat (Dat Wat Wat	ter Level te and time s ter Inflow ter Outflow anges	hown)	U ₅₀ CBR E ASS B	50mm Bulk s Enviro Acid S	Diame ample f	ser tube sample or CBR testing I sample ioil Sample	S S F F St S VSt V H H	ery Soft oft irm tiff ery Stiff ard		25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400	D Dry M Moist W Wet W _p Plastic Limit
	G tra D	radational or ansitional stra efinitive or di rata change	ata	PID DCP(x-y) HP	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	V L MC D VD	Lo M D	ery Lo oose ledium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

Co-Op Studio

PROJECT NAME: Aquatic Facility

CLIENT:

SITE LOCATION: Gordon Street, Port Macquarie

TEST LOCATION: Refer to Figure **DATE:** 15/8/24

BOREHOLE NO: BH311

1 of 1

НМ

RGS21005.6

PAGE:

JOB NO:

LOGGED BY:

DRILL TYPE: RGS Ute Mounted Drill Rig EASTING: 491766 m SURFACE RL:

		YPE: OLE DIAN		te Mou : 50 m		_	CLINATION: 90° NORTHING:	491766 6522203		DATU		11.	AHD
	Drill	ling and Sar	mpling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T				-		SC	TOPSOIL: Silty Sandy CLAY, medium plas dark brown, sand, fine to medium grained.	sticity,		F			TOPSOIL
		0.30m ES		-			Sandy Gravelly CLAY: Reddish brown, sa medium grained, gravel, fine to medium gr subangular to subrounded.		-	F	HP HP	80 90 70	FILL
	15/8/2024			0. <u>5</u> -			Sandy CLAY: High plasticity, dark brown, to medium grained.	sand, fine	-	S	HP HP	30	FILL
		0.90m		-			Sandy Gravelly CLAY: High plasticity, pale sand, fine to medium grained.			S	HP HP	40 40 50	ALLUVIUM
		ES		1. <u>0</u>			Sandy Gravelly CLAY: Medium plasticity, brown, sand, fine to medium grained, grave medium grained, subangular to subrounde	el, fine to		F	HP HP HP	250 260 250	
				-							ПР	230	
				1. <u>5</u>									
				2.0			2.00m						
		2.20m					Sandy Gravelly CLAY: Low plasticity, san medium grained, sand, fine to medium gra			St			
		ASS 2.30m		2.5									
				-									
				3.0			3.00m						
				-	_		Hole Terminated at 3.00 m						
				-	-								
Wat	EGEND: /ater Water	ter Level te and time s		Notes, Sa U₅₀ CBR E	50mm Bulk s	ı Diame ample f	is ter tube sample or CBR testing il sample	S S	ncy ery Soft oft irm tiff		<2 25 50	CS (kPa 25 5 - 50 0 - 100 00 - 200) Moisture Condition D Dry M Moist W Wet W _o Plastic Limit
	Wat Wat	ter Inflow ter Outflow anges		ASS B	Acid S Bulk S		i sample Soil Sample	VSt V H H Fb Fi	ery Stiff ard riable		20 >4	00 - 400 100	W _L Liquid Limit
	Gi tra De	radational or ansitional str efinitive or di rata change	ata	PID DCP(x-y) HP	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	V L ME D VD	Lo M D	ery Lo pose ledium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

Co-Op Studio

PROJECT NAME: Aquatic Facility

CLIENT:

SITE LOCATION: Gordon Street, Port Macquarie

TEST LOCATION: Refer to Figure DATE:

BOREHOLE NO: BH319

1 of 1

16/8/24

НМ

RGS21005.6

PAGE:

JOB NO:

LOGGED BY:

DRILL TYPE: RGS Ute Mounted Drill Rig EASTING: 491801 m SURFACE RL:

		YPE: OLE DIAN		Jte Mou : 50 mi		_	EASTING: CLINATION: 90° NORTHING:	491801 6522266		SURF.		RL:	AHD
	Drill	ing and Sar	mpling				Material description and profile information				Field	d Test	
МЕТНОБ	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Encountered	0.20m ES		-	x x x	SC	TOPSOIL: Silty Sandy CLAY, high plasticit brown, sand, fine to medium grained.	y, dark	M × W _P	Fr			TOPSOIL
	Not E			0.5	x x	СН	Silty Sandy CLAY: Medium plasticity, grey brown, gravel, fine to medium grained. 0.50m	ish		St	HP	150	ALLUVIUM
		0.70m		-		CL	Sandy CLAY: Medium plasticity, yellow bro sand, fine to medium grained.	own,		VSt	HP HP	110 250 240	RESIDUAL
		ASS 0.80m		1.0							HP	250	
				-		CL	Sandy CLAY: Low plasticity, reddish brown fine to medium grained.	n, sand,			HP HP	350 320 310	RESIDUAL
				1.5			1.50m Hole Terminated at 1.50 m						
LEG Wat Stra				2.0 -									
				2. <u>5</u>									
				3. <u>0</u>									
LEG	END:			Notes, Sa	mples a	nd Test	<u>s</u>	Consiste	ncy		U	CS (kPa	a) Moisture Condition
Wat	er Wat (Dat Wat Wat	er Level te and time s er Inflow er Outflow anges	hown)	U ₅₀ CBR E ASS B	50mm Bulk s Enviro Acid S	Diame ample f	ter tube sample or CBR testing I sample ioil Sample	S S F F St S VSt V	ery Soft oft irm stiff ery Stiff lard riable		25 50 10 20		D Dry M Moist W Wet W _p Plastic Limit
	G tra De	radational or ransitional stra efinitive or di rata change	ata	PID DCP(x-y) HP	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Density	V L ME D VD	Lo D D	ery Lo oose lediun ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

Co-Op Studio

PROJECT NAME: Aquatic Facility

TEST LOCATION: Refer to Figure

JOB NO:

PAGE:

DATE:

RGS21005.6

SITE LOCATION: Gordon Street, Port Macquarie

LOGGED BY: НМ

BOREHOLE NO: BH321

16/8/24

1 of 1

DRILL TYPE: RGS Ute Mounted Drill Rig

CLIENT:

EASTING: 491767 m **SURFACE RL**:

ROREHOI E DIAMETER: 50 mm INCLINATION: 90° NORTHING: 6522273 m DATUM: ΔHD

	во	REH	OLE DIAN	IETER:	50 mi	m	IN	CLINATION: 90° NORTHING:	6522273	m [DATU	M:		AHD
		Drill	ing and Sar	npling				Material description and profile information				Field	d Test	
	METHOD	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
F	AD/T	Intered	0.10m ES		-		SC	TOPSOIL: Silty Sandy CLAY, high plasticity brown, sand, fine to medium grained.	y, dark	A V M	Fr			TOPSOIL/ FILL
		Not Encountered			- - 0. <u>5</u> -		CL	Sandy CLAY: Medium plasticity, reddish bi sand, fine to coarse grained.	rown,		VSt	HP HP HP	350 340 360	FILL
2.00.0 2021-06-30			1.20m		1. <u>0</u>	x	СН	Silty Sandy CLAY: High plasticity, dark grefine to coarse grained. 1.10m Silty Sandy CLAY: High plasticity, pale grefine to medium grained.		_	S	HP HP HP	30 30 80 80	FILL
0.3 2022-03-03 Prj: RG			ASS 1.30m		- - 1. <u>5</u>	x x	CL	1.40m Sandy CLAY: Medium plasticity, yellow bro sand, fine to medium grained.	own,		St	HP HP	80 40 200	
Situ Tool - DGD Lib: RG 2.00					-			1.90m				HP HP	180 190	
0.03.00.09 Datgel Lab and In					2.0_			Hole Terminated at 1.90 m						
< <drawingfile>> 12/9/2024 13:04 1</drawingfile>					2. <u>5</u>									
RG 200.31B.GLB Log RG NON-CORED BOOREHOLE - TEST PIT RGSZ10656 BHLGGS 300 SERRES TR1-TP-10.GPJ <-CDawnypFlac> 12/0/2024 15:04 10.03.00.08 Dagget Lab and in Stu Tod - DGD Lib. RG 2.00.0 3.02/2034.03 PJ, RG 2.00.0 2021-08:30					3. <u>0</u> -									
TEST PIT RGS21005.6	LEG	END:			- Notes, Sa	mples a	nd Tes	ts	Consiste	ncy		U	CS (kPa	a) Moisture Condition
RG NON-CORED BOREHULE -	Wate	er Wat (Dat Wat Wat	er Level te and time s er Inflow er Outflow anges	hown)	U₅o CBR E ASS B	50mm Bulk s Enviro Acid S	Diame ample f	ter tube sample or CBR testing al sample Soil Sample	VS V S S F F St S VSt V	ery Soft oft irm stiff ery Stiff lard riable		25 50 10 20		D Dry M Moist W Wet W _p Plastic Limit
RG 2.00.3 LIB.GLB Log		G tra D	radational or ansitional stra efinitive or dis rata change	ata	Field Test PID DCP(x-y) HP	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)	Density	V L ME D VD	Lo M D	ery Lo oose ledium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT:

Co-Op Studio

PROJECT NAME: Aquatic Facility

SITE LOCATION: Gordon Street, Port Macquarie

TEST LOCATION: Refer to Figure **DATE:** 16/8/24

BOREHOLE NO: BH324

1 of 1

НМ

RGS21005.6

PAGE:

JOB NO:

LOGGED BY:

DRILL TYPE: RGS Ute Mounted Drill Rig EASTING: 491799 m SURFACE RL:

DRI BO		OLE DIAN	RGS U IETER:			-	EASTING: CLINATION: 90° NORTHING:	491799 6522358		DATU			AHD
	Drill	ing and Sar	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics, colour, minor componer		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Encountered			_		SC	FILL: Silty Sandy CLAY, high plasticity, da sand, fine to medium grained.	rk brown,	M × W _P	Fr			FILL/TOPSOIL
	ot Encou			-		CL	FILL: Sandy CLAY, medium plasticity, oral brown, sand, fine to medium grained.	ngish	_	St	HP HP	160 180	FILL
	Not			0. <u>5</u>							HP	160	
		0.70m		-		CL	FILL: Sandy Clay, low plasticity, reddish by sand, fine to medium grained, traces of grained.			VSt	HP HP	480 400	ALLUVIAL
		ES		_ _			medium grained, subangular to rounded.				HP	380	
		1.00m		1.0									
		ASS 1.20m		_									
				- - 1.5		CL	1.40m Sandy Gravelly CLAY: Medium plasticity,				HP	250	RESIDUAL
				1. <u>5</u>			brown, sand, fine to medium grained, grav medium grained, subangular to subrounde				HP HP	270 270	
				_	<u> </u>		Hole Terminated at 1.70 m						
				2. <u>0</u>									
				_									
				- - 2. <u>5</u>									
				-									
				-									
				3. <u>0</u>									
				-									
				_									
Wate		er Level		Notes, Sa	50mm	Diame	er tube sample	s s	ery Soft		<2 25	5 - 50	D Dry M Moist
<u> </u>	(Dat Wat	e and time s er Inflow	hown)	CBR E ASS	Enviro Acid S	nmenta Sulfate S	or CBR testing I sample oil Sample	St S VSt V	Firm Stiff Very Stiff		10 20) - 100)0 - 200)0 - 400	W Wet W _p Plastic Limit W _L Liquid Limit
Stra		er Outflow anges		В		ample		Fb F	lard riable			100	
	Gi tra De	radational or ansitional stra efinitive or di rata change	ata ,	Field Test PID DCP(x-y) HP	Photo Dynar	nic pene	n detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Density	V L MD D	Lo M	ery Lo oose ledium ense	oose n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85%

Co-Op Studio

PROJECT NAME: Aquatic Facility

CLIENT:

SITE LOCATION:Gordon Street, Port MacquarieLOGGED BY:HMTEST LOCATION:Refer to FigureDATE:16/8/24

BOREHOLE NO: BH326

1 of 1

RGS21005.6

PAGE:

JOB NO:

DRILL TYPE: RGS Ute Mounted Drill Rig **EASTING**: 491762 m **SURFACE RL**:

		YPE: OLE DIAN		te Mou 50 mi			CLINATION: 90° NORTHING:	491762 6522376		DATU		NL.	AHD
	Drill	ing and Sar	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (Not measured	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Not Encountered	0.20m ES		-		SC	TOPSOIL: Silty Sandy CLAY, high plasticity brown, sand, fine to medium grained.	y, dark	M < W _P	F			TOPSOIL
	Not Er			- 0. <u>5</u>		CL	Sandy CLAY: Low plasticity, pale grey, sar medium grained, traces of gravel, fine to m grained, subangular to subrounded.			VSt	HP HP HP	330 330 320	FILL
				-		CL	Sandy Gravelly CLAY: Medium plasticity, brown, sand, fine to medium grained, grave medium grained, subangular to subrounde	el, fine to			HP HP	300 300	FILL
		0.90m ES		1. <u>0</u>							HP	280	
				- 1. <u>5</u> -		CL	Sandy Gravelly CLAY: Medium plasticity, brown, sand, fine to medium grained, grave medium grained, subangular to subrounde	el, fine to			HP HP	250 280 230	FILL
				- - 2.0_		СН	1.80m Silty Sandy CLAY: High plasticity, dark grefine to medium grained.	ey, sand,	M > w _P	S	HP HP	10 10 20	ALLUVIUM
				-	^ 							20	
		2.50m ASS 2.60m		2. <u>5</u>		CL	Sandy CLAY: Medium plasticity, yellow bro sand, fine to medium grained.	own,		St	HP HP	110 120 110	
				3.0			3.00m				111	110	
				-	-		Hole Terminated at 3.00 m Install to 2.7m, slotted 0.7, plain 2.0						
_EG	END:			Notes, Sa	mples a	nd Tes	3	Consister VS V	ncy ery Soft		<u>U(</u> <2	CS (kPa	Moisture Condition D Dry
▼	Wat (Dat Wat Wat	er Level te and time s er Inflow er Outflow anges	hown)	U ₅₀ CBR E ASS B	Bulk s Enviro Acid S	ample f nmenta	ter tube sample or CBR testing al sample Soil Sample	S S F Fi St S VSt V	oft rm tiff ery Stiff ard iable		50 10 20	5 - 50 0 - 100 00 - 200 00 - 400 400	M Moist W Wet W _p Plastic Limit
	Gi tra De	radational or ansitional stra efinitive or di rata change	ata	Field Test PID DCP(x-y) HP	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	V L MD D VD	Lo M D	ery Lo oose edium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

Appendix B Laboratory Test Result Sheets

RESULTS OF ACID SULFATE SOIL ANALYSIS

1 sample supplied by Regional Geotechnical Solutions Pty Ltd on 11/05/2021. Lab Job No. K6769 (previously K4980/1) Analysis requested by Tim Morris. Your Job: RGS21005.6.

44 Bent Street WINGHAM NS		Non-tre	ated soil	Non-treated soil										
Sample Identification	EAL Lab Code	Texture	Moisture	Content	Potential Sul	fidic Acidity		Actual Acidity	Retained Acidity		Acid Neutrali	sing Capacity	Net Acidity	Lime Calculation
					(Chromium Reducible Sulfur - CRS)			(Titratable Actual Acidity - TAA)			(AN	C _{BT})		
				(g moisture / g of oven dry soil)		(mol H ⁺ /t)	pH _{KCI}	(mol H ⁺ /t)	(%S _{NAS})	(mol H ⁺ /t)	(% CaCO ₃)	(mol H ⁺ /t)	(mol H ⁺ /t)	(kg CaCO ₃ /t DW)
Method Info.		**	,	**		(In-house method S20)		(In-house method 16b)		**		nethod S14)	**	**
BH3B 2-2.5	K6769/1	Fine	40.9	0.69	0.229	143	6.29	9					152	11

NOTES:

- 1. All analysis is reported on a dry weight (DW) basis, unless wet weight (WW) is specified.
- 2. Samples are dried and ground immediately upon arrival (unless supplied dried and ground).
- 3. Analytical procedures are sourced from Sullivan L, Ward N, Toppler N and Lancaster G. 2018. National acid sulfate soils quidance: national acid sulfate soils identification and laboratory methods manual, Department of Agriculture and Water Resources, Canberra, ACT. CC BY 4.0.
- 4. The Acid Base Accounting Equation, where Acid Neutralising Capacity has not been corroborated by other data, is Net Acidity = Potential Acidity + Actual Acidity + Retained Acidity (Eq. 3.2; Sullivan et al. 2018 full reference above).
- 5. The Acid Base Accounting Equation for post-limed soil materials is Net Acidity = Potential Acidity + Actual Acidity + Retained Acidity (post treatment Acid Neutralising Capacity initial Acid Neutralising Capacity) (Eq. 3.3; Sullivan et al. 2018 full reference above). While the Acid Neutralising Capacity of a soil material may not be included in the Net Acidity calculation (Note 4), it must be measured to give an Initial Acid Neutralising Capacity if verification testing is planned post-liming.

The Inital Acid Neutralising Capacity must be provided by the client to enable EAL to produce Verification Net Acidity and Liming calculations for post-limed soil materials.

- 6. The Acid Base Accounting Equation, where Acid Neutralising Capacity (Eq. 3.1; Sullivan et al. 2018 full reference above).
- 7. The lime calculation includes a Safety Factor of 1.5 as a safety margin for acid neutralisation (Sullivan et al. 2018). This is only applied to positive values. An increased Safety Factor may be required in some cases.
- 8. Retained Acidity is required when the pH_{KCl} < 4.5 or where jarosite has been visually observed.
- 9. A negative Net Acidity result indicates an excess acid neutralising capacity.
- 10. If insufficient mixing occurs during intial sampling, or during post-liming, or during post-limed sample than in the intial sample; the post-liming Acid Neutralising Capacity may be lower in the post-limed sample than in the intial sample.
- 11. An acid sulfate soil management plan is triggered by Net Acidity results greater than the texture dependent criterion: coarse texture ≥ 0.03% S or 18 mol H*/t; fine texture ≥ 0.06% S or 36 mol H*/t; fine texture ≥ 0.1% S or 62 mol H*/t) (Table 1.1; Sullivan et al. 2018 full reference above)
- 12. For projects that disturb > 1000 t of soil material, the coarse trigger of ≥ 0.03% S or ≥ 18 mol H⁺/t must be applied in accordance with Sullivan et al. (2018) (full reference above).
- 13. Acid sulfate soil texture triggers can be related to NCST (2009) textures: coarse and peats = sands to loamy sands; medium = clayey sand to light clays; fine = light medium to heavy clays (Sullivan et al. 2018 full reference above).
- 14. Bulk density is required to convert liming rates to soil volume based results. Field bulk density rings can be submitted to EAL for bulk density determination.
- 15. A negative Net Acidity result indicates an excess acid neutralising capacity.
- 16. '..' is reported where a test is either not requested or not required. Where pH_{KCl} is < 4.5 or > 6.5, zero is reported for S_{NAS} and ANC in Net Acidity calculations, respectively.
- 17. Results refer to samples as received at the laboratory. This report is not to be reproduced except in full.
- 18. ** NATA accreditation does not cover the performance of this service.
- 19. Analysis conducted between sample arrival date and reporting date.
- 20. All services undertaken by EAL are covered by the EAL Laboratory Services Terms and Conditions (refer scu.edu.au/eal or on request).
- 21. Results relate to the samples tested.
- 22. This report was issued on 14/05/2021. It provides additional analysis for the sample submitted as K4980/1.

RESULTS OF ACID SULFATE SOIL ANALYSIS

10 samples supplied by Regional Geotechnical Solutions Pty Ltd on 26/08/2024. Lab Job No. R8066. Analysis requested by Henry Fitzpatrick Morgan. Your Job: RGS21005.6.

Unit 14 COFFS HARBOUR NSW 2450													Non-treated soil		Non-treated soil			
Sample Identification	EAL Lab Code	Texture	Moisture Content		pH _F and pH _{FOX}			Potential Sulfidic Acidity			Actual Acidity	Retained Acidity		Acid Neutralising Capacity		Net Addity	Lime Calculation	
									(Chromium Red CR			(Titratable Actual Acidity - TAA)			(AN	C _{BT})		
			(% moisture of total wet weight)	(g moisture / g of oven dry soil)	pH _F	pH _{FOX}	pH change	Reaction	(% S _{or})	(mol H*/t)	pH _{KCI}	(mol H ⁺ /t)	(%S _{NAS})	(mol H*/t)	(% CaCO ₃)	(mol H*/t)	(mol H*/t)	(kg CaCO ₃ /t DW)
Method Info.		**				(In-house i	method S21)	1	(In-house m	ethod S20)	(In-hou	se method 16b)		1	(In-house n	nethod S14)	**	**
BH301, 2.1-2.2	R8066/1	Fine	27.6	0.38	5.35	4.24	-1.11	Extreme										
BH302, 2.1-2.2	R8066/2	Fine	22.5	0.29	5.15	4.27	-0.88	Medium	0.008	5	5.46	22					27	2
BH303, 1-1.1	R8066/3	Fine	19.1	0.24	5.25	4.04	-1.21	Medium										
BH306, 1.2-1.3	R8066/4	Fine	23.9	0.31	6.93	5.16	-1.77	Medium	< 0.005	0	6.44	5					5	0
BH309, 1.4-1.5	R8066/5	Fine	17.1	0.21	4.94	3.73	-1.21	Medium										
BH311, 2.2-2.3	R8066/6	Fine	43.4	0.77	7.63	7.51	-0.12	Volcanic	< 0.005	0	5.80	17					17	1
BH319, 0.7-0.8	R8066/7	Fine	20.6	0.26	5.21	3.93	-1.28	Low	0.005	3	5.47	26					29	2
BH321, 1.2-1.3	R8066/8	Fine	14.3	0.17	5.17	3.86	-1.31	Low										
BH324, 1-1.2	R8066/9	Fine	16.0	0.19	6.03	4.66	-1.37	Medium	< 0.005	0	6.01	9					9	1
BH326, 2.5-2.6	R8066/10	Fine	19.3	0.24	6.37	3.92	-2.45	Low			**							
				1								1	1					

NOTES:

- 1. All analysis is reported on a dry weight (DW) basis, unless wet weight (WW) is specified
- 2. Samples are dried and ground immediately upon arrival (unless supplied dried and ground).
- 3. Analytical procedures are sourced from Sullivan L, Ward N, Toppler N and Lancaster G. 2018. National acid sulfate soils guidance: national acid sulfate soils identification and laboratory methods manual, Department of Agriculture and Water Resources, Canberra, ACT. CC BY 4.0.
- 4. The Acid Base Accounting Equation, where Acid Neutralising Capacity has not been corroborated by other data, is Net Acidity = Potential Acidity + Actual Acidity + Retained Acidity (Eq. 3.2; Sullivan et al. 2018 full reference above).
- 5. The Acid Base Accounting Equation for post-limed soil materials is Net Acidity = Potential Acidity + Actual Acidity + Retained Acidity (post treatment Acid Neutralising Capacity initial Acid Neutralising Capacity) (Eq. 3.3; Sullivan et al. 2018 full reference above). While the Acid Neutralising Capacity of a soil material may not be included in the Net Acidity calculation (Note 4), it must be measured to give an Initial Acid Neutralising Capacity if verification testing is planned post-liming.

The Inital Acid Neutralising Capacity must be provided by the client to enable EAL to produce Verification Net Acidity and Liming calculations for post-limed soil materials.

- 6. The Acid Base Accounting Equation, where Acid Neutralising Capacity has been corroborated by other data, is Net Acidity = Potential Acidity + Actual Acidity + Retained Acidity Acid Neutralising Capacity (Eq. 3.1; Sullivan et al. 2018 full reference above).
- 7. The lime calculation includes a Safety Factor of 1.5 as a safety margin for acid neutralisation (Sullivan et al. 2018). This is only applied to positive values. An increased Safety Factor may be required in some cases.
- 8. Retained Acidity is required when the pHKCI < 4.5 or where jarosite has been visually observed.
- 9. A negative Net Acidity result indicates an excess acid neutralising capacity.
- 10. If insufficient mixing occurs during intial sampling, or during post-liming, or both: the Potential Sulfidic Acidity may be greater in the post-limed sample than in the intial sample; the post-liming Acid Neutralising Capacity may be lower in the post-limed sample than in the intial sample.
- 11. An acid sulfate soil management plan is triggered by Net Acidity results greater than the texture dependent criterion: coarse texture $\geq 0.03\%$ S or 18 mol H+/t; medium texture $\geq 0.1\%$ S or 36 mol H+/t; fine texture $\geq 0.1\%$ S or 62 mol H+/t) (Table 1.1; Sullivan et al. 2018
- 12. For projects that disturb > 1000 t of soil material, the coarse trigger of ≥ 0.03% S or ≥ 18 mol H+/t must be applied in accordance with Sullivan et al. (2018) (full reference above).
- 13. Acid sulfate soil texture triggers can be related to NCST (2009) textures: coarse and peats = sands to loamy sands; medium = clayey sand to light clays; fine = light medium to heavy clays (Sullivan et al. 2018 full reference above).
- 14. Bulk density is required to convert liming rates to soil volume based results. Field bulk density rings can be submitted to EAL for bulk density determination.
- 15. A negative Net Acidity result indicates an excess acid neutralising capacity.
- 16. '..' is reported where a test is either not requested or not required. Where pHKCl is < 4.5 or > 6.5, zero is reported for SNAS and ANC in Net Acidity calculations, respectively.
- 17. Results refer to samples as received at the laboratory. This report is not to be reproduced except in full.
- 18. ** NATA accreditation does not cover the performance of this service.
- 19. Analysis conducted between sample arrival date and reporting date.
- 20. All services undertaken by EAL are covered by the EAL Laboratory Services Terms and Conditions (refer SCU.edu.au/eal/t&cs or on request).
- 21. Results relate to the samples tested
- 22. This report was issued on 5/09/2024.

checked: Graham Lancaster Laboratory Manager

Appendix C

Acid Sulfate Soils Management Plan

ACID SULFATE SOIL MANAGEMENT PLAN

1 INTRODUCTION

The Acid Sulfate Soil Management Plan (ASSMP) outlined below shall be adopted for works associated with the excavation of alluvial soils for the proposed Aquatic Facility at Gordon Street, Port Macquarie where >1,000T of soil is to be disturbed.

This ASSMP is aimed at remediating or controlling the generation of sulphuric acidity during the excavation of Potential Acid Sulfate Soils (PASS). It is to be applied to all alluvial soils excavated for the development.

Attention is drawn to the fact that verification testing of the treated ASS generally takes between 5 and 10 working days and therefore time should be allowed in the earthworks management plan for the site for this process to occur.

The soil sampling program should be undertaken in accordance with NSW Acid Sulfate Soils Management Advisory Committee (1998) 'Acid Sulfate Soils Assessment Guidelines' (ASSMAC).

The ASSMP has been prepared in accordance with the ASSMAC (1998) guidelines.

2 RESPONSIBILITIES

The project superintendent is responsible for implementing the ASS management protocols detailed within this ASSMP. Only a suitably experienced ASS consultant may vary the procedures detailed herein.

The superintendent shall:

- Obtain a survey of existing ground levels and develop a model of the site that allows identification of areas where excavations will exceed 1m depth below the existing levels;
- Ensure that the procedures outlined in this management plan shall be applied to all soils excavated below existing ground level;
- Record a daily log showing the volume of material that has been excavated and treated;
- Ensure that verification testing is undertaken by an independent monitoring consultant on a regular basis prior to removal or re-use of treated soils.

The requirements of the ASSMP are in addition to, but do not override any other standard procedures such as safety considerations. Where conflict results, or may result from, the implementation of the ASS management plan as against other performance criteria, the project superintendent shall obtain directives from the project manager or the ASS consultant as appropriate.

3 NEUTRALISING MATERIALS

Fine Agricultural Lime (aglime) will be used for lining of processing or stockpile areas and for blending within excavated materials. Dolomitic aglime, or magnesium blend aglime, should not be used. The aglime shall have:

• At least 85% by weight passing 1mm, and 100% passing 2.5mm. In general a finer grind is better; and

Aglime shall have a Neutralising Value (NV) of 90% or better (i.e. NV>90).

4 MANAGEMENT AND PROCESSING OF ASS

4.1 Treatment Area

All alluvial soils excavated shall be placed in a prepared treatment area on site at an approved location. To prevent runoff to other areas of the site the treatment area shall be ringed by a bund wall that has a height of at least 0.5m that comprises soils that are not ASS or are treated ASS. The treatment area should be of sufficient size to treat the excavated materials at the proposed excavation rate and to store material for the period required to undertake the verification testing.

For alluvial materials excavated the base of the treatment area and bund wall batter shall be limed at a rate of 11kg_{lime}/tonne_{soil}.

4.2 Treatment

The ASS shall be placed in the treatment area and spread in layers of not more than 300mm thick with lime being applied across the treatment area at a rate of 11kg_{lime}/tonne_{soil}.

4.3 Verification Testing

Verification testing shall be undertaken by an independent ASS consultant. The number of samples to be tested shall be based on the volume of the stockpile or treated soil within the treatment area as outlined in Table C1.

Table C1. Number of verification samples required based on treated soil/stockpile volume

Volume (m³)	Number of samples
<250	2
251 - 500	3
501 – 1,000	4
>1,000	4 plus one per additional 500m³

The samples shall be submitted for testing by the Chromium Reducible Sulfur suite and the Verification Net Acidity compared to ASSMAC Action Criteria. The Verification Net Acidity shall be determined from the test results as outlined below:

Verification net acidity = Potential Sulfidic Acidity + Actual Acidity + Retained Acidity - (Post treatment Acid Neutralising Capacity - Initial Acid Neutralising Capacity)

If testing indicates verification net acidity values that exceed ASSMAC Action Criteria in the processed sand, reprocess (potentially requiring variation in the processing methodology) and resample to verify that acceptable values have been obtained.

All records applicable to acid sulfate testing and treatment shall be collated to substantiate treatment.

4.4 Water Quality Monitoring

Surface waters and groundwater collected in the treatment area or excavations shall be tested for pH on a daily basis during the works. If the recorded pH of any sample is less than 6, it shall be immediately retested. If the pH is again below 6, the pH shall be adjusted by the application of hydrated lime until it is in the range 6 to 8.

Where the pH is less than 4.0, the ASS Consultant shall be engaged within 6 hours to review the site practices and monitoring results and to recommend remedial measures.

Complete records of all monitoring results shall be maintained by the Contractor.

4.5 Post Treatment

Once the ASS materials have been treated in accordance with this ASSMP, the materials may be reused on site, or disposed of at a licensed waste landfill. In accordance with a directive from the EPA, unless a specific order, exemption, or approval is granted from the EPA the treated material may not be reused on another site.